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RESEARCH INFORMATION LETTER 1101: 

Technical Basis to Review Hazard Analysis 
of Digital Safety Systems 

EXECUTIVE SUMMARY 

The Office of Nuclear Regulatory Research (RES) prepared RIL-1101 in response to an Office 
of New Reactors (NRO) user need request, dated December 8, 2011. NRO requested technical 
basis for the regulatory review of an applicant’s hazard analysis (HA) and corresponding 
acceptance criteria relevant to digital instrumentation and control (DI&C) safety systems of 
nuclear power plants (NPPs). The requested information supports improvements to the 
regulatory guidance for evaluation of an applicant's HA. 

The technical basis provided in RIL-1101 focuses on evaluation of an applicant’s HA—rather 
than performing HA—while also addressing challenges that NRO has encountered during its 
licensing reviews. Many of these challenges come from hazards that are rooted in systemic 
causes, such as inadequacies in engineering organizations, processes or methods. RIL-1101 
refers to systemic causes as contributory hazards. RIL-1101 identifies systemic causes of DI&C 
safety system developments that may contribute to hazards. When a systemic cause can 
adversely affect an NPP DI&C safety system, RIL-1101 considers it a contributory hazard. 

RIL-1101 provides the U.S. Nuclear Regulatory Commission’s (NRC’s) licensing staff technical 
basis to create regulatory guidance for evaluation of an applicant’s HA for DI&C systems. An 
applicant's HA for a design certification or license amendment, which involves a DI&C safety 
system, establishes design bases of the plant and for its digital safety systems. Where RIL-1101 
identifies contributory hazards relevant to DI&C safety systems, RIL-1101 also identifies 
conditions to address them and reduce the hazard space. These conditions to reduce the 
hazard space represent technical basis for potential acceptance criteria for regulatory reviews of 
future new and advanced reactor applications. 

Hazards are the potential for harm (e.g., radiological consequences leading to disease, loss of 
life, damage to the environment, etc.). To prevent these hazards, nuclear power plant I&C 
systems maintain plant processes within acceptable performance limits by making reliable and 
accurate measurements that lead to reliable, accurate, and timely control actions. Using 
redundant, independent, electrically-isolated, and physically-separated components, I&C safety 
systems sense plant conditions and actuate controls before a limiting safety setting is exceeded 
to preserve fuel and reactor vessel integrity. 

RIL-1101 identifies examples of hazards and factors that contribute to hazards by degrading the 
safety function of a DI&C system. DI&C systems differ from their analog and mechanical 
counterparts. Rapid changes in digital technology prevent accumulation of the kind of operating 
history that applies to analog and mechanical systems. Many unsafe behaviors of digital I&C 
systems do not relate to physical principles like those used to evaluate the safety and reliability 
of analog and mechanical systems. Instead, malfunctions of DI&C systems more often arise 
from systemic causes associated with characteristics of their design and development. These 
characteristics can also make verification of DI&C systems more difficult when compared to 
analog or mechanical systems. Furthermore, analog and mechanical systems have 
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interconnections, dependencies, and interactions that are readily apparent to a reviewer as 
wires and pipes. In contrast, DI&C systems have interconnections, dependencies and 
interactions that are less obvious. When unrecognized these less obvious attributes can 
degrade the safety benefit presumed to exist through redundant, independent, electrically-
isolated, and physically-separated safety components. RIL-1101 addresses each of the 
considerations, which are unique to DI&C systems. 

Adopters of the hazard-analysis approach in RIL-1101 can apply it to an early-stage functional 
concept, and iterate the approach on the successive work products, as the development 
progresses. When applying the hazard-analysis approach in RIL-1101, the resulting design 
criteria and design bases would include constraints that avoid conditions that contribute to 
hazards. Early Identification of these avoidable contributory hazards and constraints to eliminate  
them drive downstream engineering to prevent later problems. The prevention of problems 
earlier in the lifecycle improves lifecycle economics while increasing safety.
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1 INTRODUCTION 
This research information letter (RIL) provides the U.S. Nuclear Regulatory Commission’s 
(NRC’s) licensing staff the technical basis to support the exercise of judgment in their review of 
hazard analysis (HA) performed on a digital safety system by an applicant seeking design 
certification, combined license, or a license amendment. Section 1.5 provides a brief 
background on HA, supported with elaboration in Appendix C. Section 1.6 states the purpose 
and intended audience. 

1.1 Regulatory basis 
Hazard analysis of a digital safety system could address clauses 4.8 and 5.6 in IEEE 
STANDARD 603-1991 [1], incorporated by reference in 10 CFR 50.55a(h)(3) [2]. Hazard 
analysis of a digital safety system could contribute to the analysis aspect of Title 10, “Energy,” of 
the Code of Federal Regulations (10 CFR) 50.34(a)(3) [3] and 10 CFR 52.47(a)(2) [4]. 

1.2 Work authorization 
The RIL has been prepared in response to a non-publicly available user need request, NRC 
Agencywide Documents Access and Management System (ADAMS) Accession 
No. ML11313A214, from the Office of New Reactors (NRO) dated December 8, 2011, asking 
the Office of Nuclear Regulatory Research (RES) for assimilation of the technical basis to 
support regulatory review of an applicant’s HA relevant to digital instrumentation and control 
(DI&C) safety systems in nuclear power plants (NPPs). The user need arose, because NRC 
does not have explicit guidance to review HA for a digital safety system of the kind seen in 
recent licensing reviews. 

1.3 Relationship with licensing experience 
The RIL has been focused on issues encountered in NRO’s recent licensing reviews, 
particularly hazards, which are rooted in systemic causes such as inadequacies in engineering; 
these causes are called contributory hazards in the RIL. The technical basis is focused on 
evaluation of an applicant’s HA rather than performing HA. Thus, the RIL is not intended to be a 
self-contained, comprehensive, and complete standalone technical reference for reviewing HA 
of digital safety systems in NPPs. Section 1.7 elaborates on the scope. Section 1.8 explains the 
organization of the RIL. 

Digital safety systems are becoming more difficult to analyze for many reasons, such as the 
following: 

• Rapid changes in the nature of systems and the underlying technologies (H-OTproc-7) and 

• Increasing interconnectivity (Sections 2.4.1 and 2.4.2), resulting in 

• Less accumulated experience for hazard analysis of each kind of new system (H-OTproc-7). 

Examples of associated contributory hazards include the following: 

• Inadequately constrained interactions of the digital safety system being analyzed with other 
systems and elements in its environment. 

• Incorrect decomposition and allocation of NPP-level safety functions into NPP-wide I&C 
architecture and then to the digital safety system being analyzed. 

https://adamsxt.nrc.gov/idmws/ViewDocByAccession.asp?AccessionNumber=ML11313A214
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• Inadequate identification of the quality properties1 (e.g., safety assurability, verifiability, and 
analyzability) associated with safety functions. 

• Incorrect flowdown into constraints on the architecture of the system and then the 
architecture of the software or other forms of logic. 

• Inadequate flowdown to identify requirements and constraints on technical processes, 
supporting processes, and organizational processes. 

• Declining supply and replenishment of requisite competence (Section 2.1; H-0-2). 

• Longer supply chains with weaker communication links (Section 2.1.2 H-0-9 item 2). 

• Inadequate quality of cross-organizational cross-disciplinary communications, etc. 
(Section 2.2; H-culture-9). 

1.4 Significance of the technical basis in licensing reviews 
For each “contributory hazard scenario” (which illustrates some hazard space2), the RIL 
provides examples of conditions that reduce the hazard space. These cause-and-effect 
relationships form the core of the technical basis in RIL-1101, assimilated from existing 
knowledge, acquired through a combination of literature search and expert consultation. These 
causal relationships also form a safety-goal-focused organizing framework for an applicant’s 
analysis. 

To suit project-specific needs, NRC’s licensing offices can select “contributory hazard 
scenarios” and corresponding conditions to reduce the respective hazard spaces, and transform 
these conditions into review criteria; Appendix A of NRO’s mPower design-specific review 
standard (DSRS) [5] is an example. 

1.5 Background 
A hazard, in general, is defined as “potential for harm.” In RIL-1101, the scope of “harm” is 
limited to the degradation of the performance of an NPP safety function assigned to the system 
to be analyzed. 

Hazard analysis (HA), a systems-engineering activity3, is the process of examining a system 
throughout its lifecycle to identify inherent hazards and contributory hazards4, as well as the 
requirements and constraints to eliminate, prevent, or otherwise control those hazards. 

HA is a subset of safety analysis and its evaluation is a subset of safety evaluation; the 
relationship is explained in Section 1.7.8. 

                                                 
1 In common practice, these are treated as “nonfunctional” requirements. 
2 Hazard space is defined as “all of the possible combinations of specific conditions that are relevant to a 
scenario that could lead to the degradation of a safety function.” 
3 This implies the use of systematic and repeatable methods for performing HA. 
4 Which include causal factors. 
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Current practice exhibits a wide variation in usage of the terms “hazard” and “hazard analysis.” 
For example, some experts distinguish between a hazard, its source, and its cause. To avoid 
confusion, RIL-1101 bounds the scope of HA as follows: 

1. NPP-level safety analysis (including NPP-level HA5) identifies functions required for 
NPP-level safety (known as safety functions) and correctly identifies the functions to be 
allocated to the I&C level. 

2. All hazards leading to the degradation of a safety function allocated to the I&C level are 
identified. 

3. Causes, including contributory causes (collectively known as contributory hazards), are 
identified. 

4. Commensurate requirements and constraints6 are identified. 

1.6 Purpose and intended audience 
The purpose of this RIL is to provide the technical basis to support NRC I&C staff in the 
exercise of judgment during licensing reviews that they perform7 on an applicant’s hazard 
analysis (HA) of a digital safety system in a nuclear power plant (NPP). 

Because the NRC has not previously provided any relevant explicit guidance on review of HA, 
this RIL is intended for NRO’s early adopters, to support their development of review guidance 
to be piloted in a new project applying new technology in a digital safety system for a small 
modular reactor. This application presents a learning opportunity from which NRC expects to 
identify needs for future improvements in its review guidance, regulatory guidance, and the 
underlying technical basis (i.e., the successors to this document). 

The RIL is not intended as an interim or surrogate regulatory guide to licensees or applicants. 
However, as a technical basis for the limited scope described in the next subsection, it might 
also be useful to stakeholders outside the NRC. 

1.7 Scope 
The RIL is a response to NRO’s user need request for supporting a specific project. However, 
the content is sufficiently generic to be used to generate a successor for broader application 
after RES learns from NRO’s first experience (Section 1.7.1). Content has been selected to 
support evaluation rather than performance of HA (Section 1.7.2) for NPP digital safety systems 
(Sections 1.7.3 through 1.7.5). Content is focused on hazards contributed through systemic 
causes, especially inadequacies in engineering (Section 1.7.6). Content is focused on 
supporting a deterministic review process (Section 1.7.7). 

                                                 
5 The technical basis for evaluating NPP-level HA is outside the scope of RIL-1101. The interactions 
between a digital safety system and its environment (the plant) are within scope. 
6 Specifically, in its scoping of HA, RIL-1101 leaves the creation of constraint-satisfying solutions to the 
primary development activities. See Section C.2 Reference lifecycle model for hazard analysis in 
Appendix C. 
7 Or reviews that their agents or third parties perform. 
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1.7.1 Immediate scope limited to learning cycles 
Although the content provided in RIL-1101 is intended to be more broadly applicable, the 
adequacy for broader application has to be validated through experience. Known limitations are 
identified in this section. 

1.7.1.1 Assumptions about areas not well understood 
Within the scope described above, RIL-1101 focuses on areas that are not well understood or 
recognized (e.g., those that are rooted in systemic causes and those that are contributed to 
through engineering deficiencies in system development). To quote from [6]: 

Common underlying factors8 involve organizational culture, safety culture, fatigue, other 
fitness for duty issues, training, experience, habit, habituation, dysfunctional schedule 
pressure, adverse ambient conditions, work-related distractions, and the like. 
Nevertheless, addressing ineffective hazard recognition instances, addressing the factors 
that resulted in them, and addressing their extents would be a highly cost-effective 
initiative. 

Judgment used in the selection of coverage of the subject matter is based on assumptions 
about what is not well understood. Such assumptions should be reevaluated through learning 
cycles before broader application of RIL-1101. 

It is assumed that hazards internal to the DI&C system that are contributed by hardware 
elements are well understood. Therefore, review of hardware-related HA is addressed in 
Section 2.7 only briefly9. 

1.7.1.2 Extrapolation from recent licensing experience 
Subject matter (e.g., the contributory hazard scenario) was selected in consideration of issues 
experienced by the licensing offices in the last several review projects, with the assumption that 
those issues indicated a trend. It is possible that new issues10 will surface in upcoming reviews 
that were not explicitly addressed in RIL-1101. Its adequacy should be tested through several 
learning cycles before it is applied more broadly. 

1.7.1.3 Support for application-specific customization of SRP Chapter 7 
Selection and extent of treatment of subject matter in this document was further narrowed to 
support customization of Chapter 7 of the Standard Review Plan (SRP) [7] specifically for the 
needs foreseen for the mPower project. 

1.7.2 Focus on evaluation rather than performance of hazard analysis 
RIL-1101 is focused on providing the technical basis for exercising judgment during 
licensing-review activities. RIL-1101 is not intended as an interim or surrogate regulatory guide 
to licensees or applicants. RIL-1101 is not intended to provide guidance on how to perform HA. 

Prevalent public standards and guides on HA elaborate on techniques to perform HA, but there 
is little information available on criteria for evaluating the results of HA, even though the 
systematization of hazard analysis is over four decades old. 

                                                 
8 RIL-1101 scope does not include all of the quoted factors. 
9 Appendix C leads to more information through links to supporting references. 
10 Example: Hazardous scenarios in systems using FPGA or CPLD platforms for implementation. 
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1.7.3 Focus on licensing reviews of safety automation 
Although results from HA, in general, include requirements for aspects outside the initially 
commissioned DI&C safety system (e.g., training, maintenance, and operational and 
maintenance environments), RIL-1101 does not provide the technical basis to evaluate 
requirements concerning operation and maintenance and the people engaged therein. 

Within the scope of the SRP Chapter 7, the scope of RIL-1101 is further limited to the digital 
safety automation (the DI&C equipment), including hazards from interaction with its 
environment. The operator, the operator-automation interface, and the associated control room 
are treated as part of the environment (Section 2.4.1) of the system in scope. 

1.7.4 Focus on safety-related systems for NPPs 
Prevalent public standards [8] and guides ([9], [10], and [11]) on HA are oriented to the general 
case of a system implementing a variety of functions with varying degrees of criticality. In 
contrast, RIL-1101 focuses on safety-related systems for NPPs, where the consequence of a 
mishap, an unwanted release of radioactivity into the environment (known in HA vocabulary as 
“the loss”), is of the highest degree of severity. The scope includes a system realizing a safety 
function, as well as any system or element on which the correct timely performance of a safety 
function depends (see Appendix K). 

Review of analysis for hazards external to the DI&C system, in general, is covered by parts of 
NRC’s standard review plan beyond the part applicable to the DI&C systems [7]. RIL-1101 
considers external hazards primarily from the perspective of issues with interfaces and 
interactions that can affect a safety function allocated to the system being analyzed. 

RIL-1101 does not elaborate on reviewing the analysis of hazards from the physical 
environment (Section 2.4.1 and Sections E.4 and E.5 of Appendix E), because such hazards 
are not new considerations. 

1.7.5 Types of systems intended in scope 
RIL-1101 describes the evaluation of an applicant’s HA associated with digital safety systems 
for new and advanced reactors. The scope of this RIL is limited to a system realizing a safety 
function or on which the correct timely performance of a safety function depends (see 
Appendix K). Other elements interfacing with, interacting with or affecting the DI&C safety 
system are treated as parts of its environment; to that extent, such environment is also within 
the scope (see Section 2.4.1). 

The scope treats any change to a previously analyzed DI&C safety system as the subject of a 
new hazard-analysis review cycle. 

1.7.6 Focus on contributory hazards rooted in systemic causes 
The RIL is focused on hazards rooted in systemic causes such as inadequacies in engineering 
(elaborated in Sections 2.1 through 2.6, 2.8, and 2.9). 

Systemic causes represent a special kind of common cause of failure11 (CCF) because their 
propagation is often pervasive; that is, there could be many propagation paths, and these are 
not easy to discover and analyze. (In contrast, the propagation path from a CCF caused by the 
breakdown of a component in a hardware system is relatively easier to identify and analyze.) In 

                                                 
11 “Failure” in this context means “loss of the top-level safety goal.” 
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a system with complex logic12, recognizing and understanding the cause-and-effect 
relationships or influence paths well enough requires explicit identification of a variety of 
dependencies (see Appendix K). Some dependencies can be recognized in the analysis of the 
system itself (e.g., Sections 2.4.2, 2.6.1,and 2.6.3). Some can be recognized through analyzing 
interactions of the system with its environment (e.g., Section 2.4.1). Many other dependencies 
occur through organizational processes (e.g., Section 2.2), technical processes 
(e.g., Sections 2.3, 2.4.3, 2.5, 2.6.2,and 2.6.4), and supporting or auxiliary processes. RIL-1101 
does not enumerate all contributory factors and relationships exhaustively, but uses examples 
of scenarios to illustrate certain hazard spaces and examples of related conditions that reduce 
the respective hazard spaces. These relationships are causal dependencies, known in the 
respective underlying scientific disciplines, and have been validated through expert reviews of 
RIL-1101. 

1.7.7 Scope excludes risk quantification 
Given the focus on hazards rooted in systemic causes, the scope excludes quantification13 of 
severity of consequence and probability of occurrence.14 Contributory hazards originating in the 
system-development lifecycle or rooted in systemic causes15 are pervasive (permeating) in their 
effects. The governing variables are not sufficiently controlled in the current state of practice to 
even identify the contributors, their contribution paths, and the effects of their interactions. The 
relationships of the systemic causes to the degradation of a safety function are not linear. 

1.7.8 Relation between hazard analysis and safety analysis 
Hazard analysis is an intrinsic part of safety analysis (see Appendix C.2). 

Figure 1 shows the relationship of HA16, as it is treated in RIL-1101, to other activities 
contributing to the applicant’s safety analysis report (SAR), as explained below: 

1. The result of HA activities (depicted in the upper left sector of Figure 1) is a set of safety 
requirements and constraints (included in the design bases) which are verifiable 
independently by a third party not involved in the development of the safety system. Also 
included are derived requirements and constraints on the design and implementation of the 
safety system. This set of requirements and constraints is intended to be a part of the 
licensing basis. 

2. Activities in the scope of inspections, tests, analyses, and acceptance criteria (ITAAC) 
(depicted in the upper right sector of Figure 1) verify that these requirements and constraints 
have been satisfied. These verification activities are not a part of reviewing hazard analysis 
as it is delineated in RIL-1101. 

3. Figure 9 shows the relationships of HA activities with mainstream system-development 
activities and verification activities. 

4. Whereas each verification activity yields corresponding evidence (e.g., that a certain item 
(such as hardware, firmware, or software) has met the requirements and constraints 

                                                 
12 For example, in the form of software. 
13 Scope also excludes qualitative classification or gradation. 
14 Exception: Section 2.7 pertaining to hardware components. 
15 The focus of RIL-1101. 
16 Figure 1 is a simplified depiction; see its note. 
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allocated to it), overall verification includes the integration of all the various evidence items 
(depicted in the lower sector of Figure 1) in a way that demonstrates that the overall safety 
requirements and constraints of the system have been satisfied. These activities are also 
not a part of hazard analysis as it is delineated in RIL-1101. 

5. The safety analysis report (SAR), depicted by the circle in the center of Figure 1, includes 
the validated results of HA (i.e., validation that safety requirements and constraints have 
been identified correctly, completely, consistently, and unambiguously) as well as the results 
of verification (i.e., the requirements and constraints have been satisfied). 

Note: Figure 1 is simplified for illustrating the relationship with the overall safety analysis, 
omitting the following: 

1. HA is iterated at each phase in the development lifecycle of a system (see Figure 9) 
and in the development lifecycle of each of its elements. 

2. Iteration at any phase might reveal that the phase has introduced a new hazard. 

3. The corrective action might simply be a revision within that phase or it might require 
a change in a preceding phase, invalidating the result of the preceding phase. 

4. The latter case might require multiple iterations and tradeoffs, making the analysis 
correspondingly more difficult. 

5. Verification and validation (V&V) activities during the mainstream system 
development are also iterative (from discovery of an anomaly through identification of 
root cause(s) and performance of corrective action on the artifact to performance of 
corrective action on the process), with each change generating another iteration. 
Examples of activities included in corrective actions include the following:  

5.1. Identifying an additional constraint,  

5.2. Making an assumption explicit, and  

5.3. Formulating a task to validate an assumption. 

 
 Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis. 
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1.8 Organization of RIL-1101 
Section 2 provides the technical basis to support NRC I&C staff in exercising judgment during 
the review of an applicant’s HA. As requested by NRO (the sponsoring User), supporting 
explanatory information is in the appendices. For example, Appendix C, which is incorporated 
by reference in item H-0-1G of Table 1 in Section 2.1, summarizes the state of the art in HA. 

Section 2 is organized by groups of contributory hazards, as explained below. 

1. These groupings foster different perspectives on (or projections of) intertwined17 issues, and 
are not intended to be mutually exclusive partitions. 

2. Sections 2.1 through 2.3 group contributory hazards that are applicable to all phases of the 
development lifecycle; typically, these are controlled before starting the development of a 
particular system. 

3. Sections 2.4 through 2.9 group contributory hazards from the perspectives of individual 
phases of the development lifecycle. 

4. While contributory hazards might manifest themselves or might be discovered in any of 
several phases of the development lifecycle or levels of integration of a digital safety 
system, the RIL attempts to place the item in a group corresponding to the earliest 
prevention opportunity. 

5. Relationships between scenarios of contributory hazards (illustrating corresponding hazard 
spaces) and conditions that reduce these hazard spaces are organized in tables as follows: 

5.1. The title of each table (explained in the narrative introducing it) bounds the scope and 
context of entries in the rows of the table. 

5.2. In a particular row, a left-hand cell includes an example of a scenario18 illustrating some 
hazard space. 

5.3. A right-hand cell, associated with a contributory hazard in a row, includes an example of 
a condition that reduces the respective hazard space. Many such conditions could be 
associated with a particular scenario. 

5.4. Each contributory hazard is uniquely identified with a label of the type “H-alpha-<i>” 

5.4.1. The “H-alpha-” part of the label in the headings of the tables’ “ID” columns forms 
the start of the label for the values in each row and is not repeated in any row. 
Examples are “H-0-”, “H-culture-”, and “H-OTproc-”; the heading “H-0-“ would be 
combined with the value “7” in a cell below it to derive the full label “H-0-7”. The 
prepended symbol represents the thematic relationship of items within a table, as 
conveyed in the caption of the table. For example, in Table 4, the symbol 
“H-OTproc-“ prepended to an item ID in the left column of a row indicates that it is a 
scenario of contributions to hazards through the organization’s technical processes. 
Similarly, in Table 3 “H-culture-” indicates that it is a scenario of contributions to 
hazards through the organization’s culture. 

                                                 
17 “Many-to-many” interrelationships exist. 
18 In many cases, the scenario is described as a class or category of scenarios. 



 

RIL-1101 Page 9 
 

5.4.2. The “<i>” portion of the label is a numeric character that is unique to each 
scenario of contributory hazards. 

5.4.3. For example, H-SAE-1 is a complete label for a scenario of contributory hazards. 

5.5. A label of the type “H-alpha-<i>-G<j>” identifies a condition “G<j>” that reduces the 
“H-alpha-<i>” space. 

5.5.1. For example, H-SAE-1G1 is a condition associated with H-SAE-1. 

5.5.2. In this manner, a common prepended symbol represents the corresponding 
commonality in the relationship of a scenario of contributory hazards and conditions 
which reduce the corresponding hazard space. 

6. Hyperlinks enclosed in square brackets [] are used selectively to identify other salient 
relationships of the following kinds: 
6.1. between scenarios of contributory hazards, possibly across groups (tables); 
6.2. between scenarios and conditions reducing the respective hazard spaces; and 
6.3. between conditions reducing the various hazard spaces. 

7. The symbol ↑ as used in the form “[H-culture-8↑]” in a cell indicates that the item in the cell 
“contributes to” or is “derived from” the linked item (e.g., H-culture-8). 

8. The symbol ↓ as used in the form “[H-S-1.1G1↓]” in a cell indicates that the item in that cell 
“requires” the linked item (e.g., “H-S-1.1G1”). 

9. Not all of the many-to-many relationships are hyperlinked. 

10. Where needed, a note structure, distinguished by indentation, font type, and font size 
provides a brief explanation or example for an “H-alpha-<i>” or “H-alpha-<i>-G<j>” 
paragraph. 

11. Enclosure within braces {} in a cell indicates that the symbol prepending the enclosure 
applies to each enclosed item. 

12. Enclosure within parentheses () in a cell indicates a reference for more information on the 
item in the cell. For example, in Table 1, cell ID H-0-3G1, the enclosure (in common position 
(CP) 2.1.3.1 in [12]) indicates that the cited reference has more information about the 
condition, “the requirements … are validated.” 

13. A link to an item in an appendix leads to further elaboration and background. 

Section 3 explains how HA review fits in the regulatory framework. 

Section 4 summarizes the contribution of RIL-1101 and Section 5 outlines the follow-on 
research and development (R&D) identified in the course of this work (e.g., unresolved review 
comments). 

Where a word or expression is used in a meaning more specific than or different from the 
common usage defined in mainstream dictionaries, it is defined in Appendix A: Glossary. Its first 
occurrence is hyperlinked to that definition. 
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2 CONSIDERATIONS IN EVALUATING HAZARD ANALYSIS 
RIL-1101 primarily addresses factors contributing to the degradation of a safety function that are 
rooted in engineering19. These factors are part of a network of causes or dependencies (see 
Appendix K) that result in some deficiency in the system (or deficiency in prevention of 
interactions), which could lead to the degradation of a safety function. RIL-1101 refers to these 
factors as contributory hazards. 

 
 

However, recent experience has revealed that propagation paths of hazards are not always 
linear and that cause-and-effect relationships are not always direct chains. The indirect 
propagation of effects (e.g., degradation of a safety function), contributory interactions, and 
propagation paths are not well understood. For example, [13] characterizes these as “issues 
that transcend the functions of individual components and involve interactions between 
components within the system as well as the interaction of the system with the environment.” 
Traditional techniques for hazard analysis, as used in common practice, such as fault-tree 
analysis (FTA) [14][15] and failure modes and effects analysis for design (DFMEA) [16][17], do 
not support the discovery of such contributory hazards well. RIL-1101 is intended to address 
these gaps. 

Experience with complex systems in general [18], and with digital systems for critical functions 
in diverse application sectors in particular, has revealed that common practice does not ensure 
the absence of conditions contributing to hazards. 

The difficulties that the NRO experienced (as it reported to the Advisory Committee on Reactor 
Safeguards (ACRS) [19]) are examples of the more general trends of increasing system 
complexity and increasing contribution of systemic causes towards malfunctions. Generally 
                                                 
19 As opposed to factors arising from random hardware failures during operation. 

Controller 

(organization, team, 
individual, or automated system) 

Controlled entity 

(process, system, or device 

Control signal 

(command, corrective action, or 
actuation) 

Process state 

(sensed, measured, estimated, or 
assessed) 

Figure 2: Example of a dependency structure (cyclic graph). 
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accepted engineering standards20 do not provide sufficiently specific guidance to ensure their 
technically consistent and efficient application to digital systems with such complexity. Such 
reviews require significant additional information from the applicant, significant additional review 
effort, and reliance on judgment to address the gap in the existing review guidance. These gaps 
were identified in [20] as sources of uncertainty in the assurance of digital safety systems. As 
depicted in Figure 3, RIL-1101 focuses on the challenges from these uncertainties, 
characterized as contributory hazards, and identifies corresponding conditions that reduce the 
respective hazard spaces. 

 
Figure 3: Contributory hazard space in focus. 

 

2.1 Evaluation of Overall Hazard Analysis 
From the wide range of approaches, methods, and techniques to perform hazard analysis, the 
selection should be well-matched to the object21 being analyzed. Recognizing that, often, 
hazardous conditions are obscure and difficult to identify, the performers (typically a team) 
should have the requisite22 competence. The controls that correspond to the hazardous 
conditions should be adequate. The analysis should flow down to all the elements and factors 
                                                 
20 This expression is mentioned in 10 CFR 50.34(a)(ii)(B); examples are cited in the NRC’s regulatory 
guides. 
21 For example, techniques in common practice such as FTA and failure modes and effects analysis 
(FMEA) may not be very helpful in a situation confounded with interactions and feedback paths. 
22 Proficiency only in FMEA for random hardware failures might not suffice. 
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on which the safety function or its integrity depends. Table 1 includes such overarching 
considerations in evaluating the HA of a digital safety system. Because these factors affect the 
quality of HA broadly, they are treated as contributory hazards in Table 1. Key considerations 
are explained in notes after the table and in Appendices C and F. 

Table 1: Considerations in broadly evaluating hazard analysis 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-0- Description 

ID 
H-0- Description 

1 HA approach is not suitable 
to the system, element, 
intermediate-phase work 
product, process, or activity 
being analyzed. 

1G The selected HA approach is well-matched to the system 
aspect, element, development phase, or work product 
being analyzed, with considerations discussed in 
Appendix C. 

2 Competence in performing 
HA is not adequate for the 
system being analyzed. 
(Also see H-SRE-1.) 

2G1 The HA is performed with the requisite complement of 
competence; see Appendix C.4 and [H-culture-6G2]. 
Also see Appendix F.4. 

3 Validation is inadequate or 
impaired because people in 
the developer’s organization 
are unable to think 
independently. 
Intra-organizational reviews 
suffer from “groupthink.” 
See Appendix F.4.4. 
 

3G1 The HA  is validated, including elements on which it 
depends (see Appendix K) [H-0-8↓, H-0-9↓], and  
including the resulting requirements and constraints, (in 
CP 2.1.3.1 in [12]) independently, without exacerbating 
H-culture-9. Also see Appendix F.3. 
1. The HA-validation team has the requisite competence 

[H-0-2G1]. 
2. The HA-validation team provides perspectives and 

background different from the team performing the 
HA. 

3G2 See Appendix F.2 (diversity and independence) and F.4.4 
(groupthink). 



 

RIL-1101 Page 13 
 

Contributory hazards Conditions that reduce the hazard space 
ID 
H-0- Description 

ID 
H-0- Description 

6 Hazard controls needed to 
satisfy system constraints 
(which prevent hazards) are 
inadequate. 

6G1 Hazard controls are identified and validated to be correct, 
complete, and consistent. 
[H-0-7G1↓] 

7 Flowdown from the controls 
[H-0-6-G1↑] to verifiable 
requirements and 
constraints is inadequate. 

7G1 Requirements and constraints [H-0-6G1↑] are formulated 
and validated to be correct, complete, and consistent in 
consideration of preference23 order 1 through 4 as follows: 

1. Prevent hazard 

2. Eliminate hazard 

3. Contain hazard (prevent propagation) [H-SR-4G4↓] 

4. Monitor, detect and mitigate24 hazard 

4.1. Monitor [H-SR-4G1↓] 

4.2. Detect [H-SR-4G2↓] 

4.3. Intervene [H-SR-4G3↓] 

4.4. Notify (some independent agent)25 [H-SR-4G5↓] 

4.5. (Recipient26 of the notification) Perform 
safety-supporting function 

4.6. Confirm safe state 

8 The analysis is not 
propagated to elements in 
an NPP on which the 
system being analyzed 
depends or on which the 
safety functions allocated to 
the system depend. 
See [H-Dep-1.1↓] in Table 2. 

8G1 All dependencies (see Appendix K and Section C.1.3 of 
Appendix C) are identified and analyzed to confirm that a 
safety function is not degraded. 
Also see H-culture-12G2. 

9 The analysis is not 
propagated to processes 
and process activities on 
which the integrity of the 
system being analyzed 
depends or the safety 
functions allocated to it 
depend. 
See [H-Dep-2↓] and [H-Dep-
3↓], in Table 2. 

9G1 All dependencies are identified and analyzed to confirm 
that a safety function of the engineered system is not 
degraded. Processes include organizational processes, 
management processes, supporting processes, and 
technical processes. 
Also see H-culture-12G2. 

                                                 
23 Based on the extent of reduction of hazard space, potential fault space, and uncertainty space. 
24 To maintain a safe state. 
25 For example, the operator or another automated device or system. 
26 For example, the operator or another automated device or system. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-0- Description 

ID 
H-0- Description 

10 Propagated effect of 
changes introduces 
inconsistencies, invalidating 
previously performed HA. 

10G1 Starting from the initial HA performed on the functional 
concept (in CP 2.1.3.2.3 in [12]), the HA is revised at 
every phase27 of the development lifecycle, with 
change-control management and configuration 
management. 
Examples of contributory hazards that might be 
discovered include: 
1. Hardware faults  
2. Unanalyzed conditions [H-S-1.1.1G1↑]. 

10G2 The HA has been iterated until no new hazards are 
identified [H-0-8G1↑]: 

1. No added monitoring, detection, mitigation or other 
requirement has introduced some new hazard. 

2. No complexity-increasing side effect from the change 
has introduced some other yet-unanalyzed hazard. 

10.1 Hazard-introducing effect of 
iterations is not well 
understood. 

10.1G H-0-9G1↑ 
H-0-10G1↑ 
H-0-10G2↑ 
 

11 Required hazard-control 
action is degraded. 

11G1 Each required control action is analyzed for ways in which 
it can lead to the hazard, such as: 

1. A control action is not provided; for example: 
1.1. Data sent on a communication bus is not 

delivered. 

2. A control action is provided when it is not needed. 

3. An incorrect state transition occurs 
(e.g., a combination of items 4 and 5 below). 

4. An incorrect value is provided; for example: 
4.1. Invalid data is provided. 
4.2. Stale input value is treated inconsistently. 
4.3. An undefined type of data is provided. 
4.4. Data is provided in an incorrect message format. 
4.5. Incorrect initialization occurs. 

5. A control action is provided at the wrong time or out of 
sequence. 

6. A control action is provided for too long a duration 
(e.g., for continuous-control functions). 

7. A control action is provided for too short a duration; 
for example: 
7.1. A signal is deactivated too early (e.g., for 

continuous-control functions). 
 

8. A control action is intermittent when it is required to be 
steady; for example: 
8.1. Chatter or flutter occurs. 

                                                 
27 Also apply these considerations to successive phases of the system-development lifecycle. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-0- Description 

ID 
H-0- Description 

8.2. A pulse or spike occurs. 
8.3. Degradation is erratic. 

9. A control action interferes with another action; for 
example: 

9.1. It prevents access to a needed resource; for 
example: 
9.1.1. It is affected by the “babbling idiot” 

problem. 
9.1.2. It locks up and does not release the 

resource 

9.2. It corrupts needed information. 

10. A control action exhibits Byzantine behavior. 
12 Hazards in modes of 

operation other than the “at 
power” normal mode, or in 
transition from one mode to 
another, are not adequately 
understood or analyzed. 

12G1 HA is performed for all modes of operation (in 
CP 2.1.3.2.7 in [12]) and corresponding requirements & 
constraints are derived (see checklist in Appendix H for 
examples). 

As HA evaluation progresses further, the selection of information from Sections 2.2-2.9 will be 
case-specific, depending on the nature of the object and completeness of product-based 
analysis. 

2.1.1 Considerations for hazards within the system being analyzed 
Referring to Table 1, the following notes explain certain contributors to hazards within the 
system being analyzed and show relationships to later items in this RIL. 

H-0-{6, 7, and 11}: These factors address the flowdown from direct hazards to system 
constraints to required controls to verifiable requirements and constraints. Sections 2.2 
through 2.9 elaborate on hazard contributors encountered in the flowdown. 

H-0-{8 and 9}: Whereas “ineffective hazard recognition” has been recognized as a 
serious issue [6], unrecognized dependencies (see Table 2 and Section C.1.3 of 
Appendix C) become an increasing contributor to this issue as the complexity of 
organizations, processes, and systems increases. In addition to the lack of awareness, 
lapses could occur because of inability to track and maintain a consistent understanding 
of the dependencies. 

H-0-8: The extent of dependencies in a system and its elements might not be fully 
understood or might not be understood in the same way by all parties engaged in 
developing the system; alternatively, multiple changes might introduce obscurity. The 
intent of reviewing for dependencies is to check that the system on which HA is to be 
performed and its context (environment) are correctly identified, that the dependencies 
are correctly understood, that the conditions that might degrade a safety function 
(external and internal) are identified, and that the commensurate constraints are 
formulated (see Table 2). 

2.1.2 Considerations for hazards contributed through processes 
When absence of hazards cannot be ascertained from HA of the system, certain residual 
uncertainties are addressed by extending HA to the corresponding process 
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dependencies. When HA has to be extended to processes, a third-party certification of 
the system could provide the requisite confirmation that all process-related 
dependencies have been identified and their effects analyzed. 

H-0-9: The extent of dependencies on processes, including the physical processes in the 
plant, might not be fully understood. For example, Figure 4 depicts an abstraction of 
process-related direct dependencies. Figure 4 is an example of a generic dependency 
structure, illustrating how the transformation of a work product depends on the process 
activity and factors on which that activity depends. This process dependency structure 
can be applied to organize and understand the contribution of organizational processes 
(Section 2.2) as well as technical processes (Section 2.3). This process dependency 
structure is also applicable to any other creative but deterministic activity from which 
predictable, verifiable, and analyzable results are needed. Each activity step is affected 
by the procedures and resources employed in performing that activity. As shown in 
Figure 4, examples of resources include some tool, other aid, information or competence 
(e.g., H-culture-6G3) of the performer as symbolized with the cross in a circle. Note that 
information, tool, or other aid could also depend upon competence. The quality of the 
work product depends on the quality of the procedures and resources and on their use; 
that is, any deficiency is a contributory hazard. The following are examples that indicate 
less-than-adequate controls and thus less-than-adequate understanding of 
interdependencies across processes. 

1. Organizational processes lack such controls; or 

2. The organization does not apply such controls to the feeder processes, food chain, or 
supply chain; or 

3. The organization does not plan for such understanding at the system-concept phase 
of the lifecycle. 

4. Adequacy of competence of indirectly employed human resources (in Figure 4, 
symbolized with the dotted cross in a dotted circle) are not validated. 

H-0-10.1: When HA is performed at some stage in the development lifecycle of the 
system and its elements, additional safety requirements and constraints could be 
discovered. Inclusion of those requirements28 could change the system concept or 
design, requiring another HA cycle to evaluate the impact of such changes. The 
cumulative and cascading effects of these iterations might not be well understood, with 
the potential to miss subtle implications of a change. 

                                                 
28 Incorrect, incomplete, inconsistent, or ambiguous safety requirements can lead to hazards. 
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Figure 4: Factors influencing the work product of development. 

Table 2: Examples of contributions to hazards through interdependencies 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-Dep- Description 

ID 
H-Dep- Description 

1 Unrecognized 
interdependencies in 
the system: 
Interdependencies in the 
system, its elements, 
and its environment (see 
H-ProcState-4) are not 
understood, recognized, 
or explicitly identified, 
leaving some 
vulnerability, which can 
lead to the degradation 
of a safety function. 
[H-0-8↑] 

1G1 All interdependent systems, elements, processes, and 
factors affecting a safety function are identified. 
See H-culture-{8G2 and 9G2}. 

1G1.1 Design rationale is recorded and tracked. See 
Appendix F.2. 

1G2 The items identified in accordance with H-Dep-1G1 are 
configuration items. 

1G3 The interdependencies or relationships among these 
items are unambiguously described, especially those 
affecting emergent behavior. 
Also see H-culture-{12G2 and 12G3}. 

1G4 Semantics of the relationships are explicit: 
Relationships might not merely be sequential (chained) 
or tree structures, but also cycles (often feedback 
control loops).29 [H-ProcState-2G1↑] 

1G5 The interrelationships of these configuration items are 
identified (e.g., by means of an overall NPP-level 
architecture). 

                                                 
29 Contrast this situation with the typical chain of events initiated by the failure of a hardware component. 

Intent, needs, requirements, specifications, procedures, and 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-Dep- Description 

ID 
H-Dep- Description 
1G6 These interrelationships are also a configuration item 

or set of configuration items.  
1G7 Independent verification assures that these 

configuration items represent reality. 
[H-0-8.1G1↑] 

1G8 The effects of these dependencies are analyzed to 
prove that the safety function is not degraded. 

1G9 Any change in any of these configuration items is 
managed through a change-control process, with an 
explicit analysis of the impact of change. (Generalized 
from CP 2.7.3.1.5 in [12].). 
See Appendix F.2. 

1G10 The change-impact analysis is independently verified.  
1G11 The change-impact analysis is a configuration item.  

1.1 Dependencies through 
the environment of the 
digital safety system are 
not recognized; for 
example: 
• Dependencies on the 

physical processes 
• Dependencies on 

degraded behavior of 
related 
instrumentation and 
peripheral equipment 

1.1G1 The effects of these dependencies are analyzed to 
prove that the safety function is not degraded. 

1.1G2 H-culture-8G2 

2 Unrecognized 
interdependencies in 
the development 
process: 
Interdependencies in the 
system-development 
process, feeder 
processes, supporting 
processes, elements, 
and environments are 
not understood, leaving 
some vulnerability, 
which can lead to a 
deficiency in the system, 
which could in turn lead 
to the degradation of a 
safety function. [H-0-9↑] 

2G1 All interdependent processes (including feeder and 
supporting processes), resources used in these 
processes, and factors affecting these processes and 
resources are identified (e.g., see Figure 4). 
See H-culture-{8G2 and 9G2}. 

2G2 These are configuration controlled items (henceforth, 
configuration items). 

2G3 The interdependencies or relationships among these 
items are unambiguously described, including cycles 
created through feedback loops30. 
Also see H-culture-{12G2 and 12G3}. 

2G4 The interrelationships across these configuration items 
are identified (e.g., by means of an overall process 
architecture) and are also a configuration item or set of 
configuration items. 

2G5 Some combination of independent assessment, audit, 
and verification ensures that these configuration items 
accurately represent reality. 

2G6 Any change in any of these configuration items is 
managed through a change-control process.  

2G7 The effects of these dependencies are analyzed to 
prove that the safety function is not degraded. 

2G8 H-culture-8G2 

                                                 
30 These can also be analyzed as control loops influencing safety properties of the affected system. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-Dep- Description 

ID 
H-Dep- Description 

3 Dependencies through 
supporting services and 
processes are not 
recognized. 

3G1 The effects of these dependencies are analyzed to 
prove that the safety function is not degraded. 
See H-culture-{8G2 and 9G2}. 

3G2 H-culture-8G2 
4 Dependencies through 

resource31 sharing are 
not recognized; 
examples might be: 
• Contention for the 

shared resource 
• Corruption of the 

resource (e.g., data) 

4G1 The effects of resource sharing are analyzed to prove 
that the safety function is not degraded. 
See H-culture-{8G2 and 9G2}. 

Note: Whereas “ineffective hazard recognition” has been recognized as a serious issue [6], 
unrecognized dependencies are an increasing contributor to this issue because the complexity of 
organizations, processes, and systems is increasing. In addition to the lack of awareness, lapses could 
occur because of inability to track and maintain a consistent understanding of the dependencies. The 
state of practice in representing and analyzing such dependencies is relatively weak. Also see Appendix 
K. 

2.2 Evaluation of hazard analysis—organizational processes 
Organizational processes include management processes, infrastructural processes, and other 
supporting processes. The term “supporting processes” includes the change-impact analysis 
process and maintenance processes on which the system design is predicated. 

The culture of an organization with respect to safety engineering and the processes of 
managing and engineering safety (included within “organizational processes”) have pervasive, 
permeating effects; that is, the contribution of culture-dependent factors cannot be analyzed32 
as causal events. In software-dependent systems, where the hazard space is much larger than, 
say, in engineered mechanical structures, these contributors can render the hazards 
unanalyzable.Table 3 identifies some common concerns. 

Table 3: Examples of contributions to hazards through an organization’s culture 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-culture- Description 

ID 
H-culture- Description 

1 The reward system favors 
short-term goals, placing cost and 
schedule over safety and quality 
(sliding on a slippery slope, not fully 
cognizant of the cumulative effect 
of compromises). 
(Adapted from Annex B in [21].) 

1G1 The reward system supports and 
motivates the effective achievement of 
safety. Safety is the highest priority. 
Also see Appendix F.3. 

1G2 The reward system penalizes those who 
take shortcuts that jeopardize safety or 
quality. 

                                                 
31 Examples might be: Skilled resources for development and computing memory or processor time 
during execution. 
32 This aspect of HA roughly corresponds to, but is significantly broader than, the HA mentioned in 
Table 1a in [10]. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-culture- Description 

ID 
H-culture- Description 
1G3 The organization has integrity.33 
1G3.1 The process34 state is consistent between 

reality and its representation. 
1G4 Lifecycle economics supporting safety 

and quality drive the organization. 
2 Accountability (e.g., as illustrated in 

Figure 2 and Figure 4) is not 
traceable; achievement of safety 
cannot be assured. 
Individual accountability becomes 
lost, because (often without careful 
reflection) individuals make 
decisions and evaluate information 
based on the master premise of the 
organization. See Appendix F.2. 

2G1 The process ensures accountability for 
effective achievement of safety. 

2G1.1 Influencing factors are organized in an 
effective control structure35 (Figure 2) 
without exacerbating H-culture-9. Also 
see Appendix F.3. 

2G2 Management commitment to safety 
motivates effective achievement of safety. 

3 Personnel assessing safety, quality, 
and their governing processes are 
influenced unduly by those 
responsible for execution. 
[H-culture-1↑] 

3G1 Although information in the processes for 
safety, quality, verification & validation, 
and configuration management should be 
functionally integrated with the main 
development process to prevent 
information loss, the performing 
personnel are independent (free from 
undue influence) without exacerbating 
H-culture-9. Also see Appendix F.3. 

4 Personnel feel pressure to conform: 
1. “Stacking the deck” when 

forming review groups. 
2. Dissenter is ostracized or 

labeled as “not a team player” 
3. Dissent reflects negatively on 

performance reviews. 
4. “Minority dissenter” is labeled or 

treated as a “troublemaker” or 
“not a team player” or 
“whistleblower.” 

5. Concerned employees fear 
repercussion. [H-culture-1↑] 

4G1 Such behavior is discouraged and 
penalized. See Appendix F.4.4. 

4G2 The process uses diversity to advantage. 
1. Intellectual diversity is sought, valued, 

and integrated in all processes. 
2. “Speaking up” (raising safety 

concerns) is rewarded. 
3. See Appendix F.4.2 and F.4.4. 

4G3 Supporting communication and 
decisionmaking channels exist and the 
management encourages their usage 
(e.g., an individual can express safety 
concern directly to those ultimately 
responsible). 
See Appendix F.4.2. 

4G4 Each identified hazard is logged and 
tracked to its closure, as explained in 
subsections C.3.2 and C.3.3 of 
Appendix C. 
See Appendix F. 

                                                 
33 Integrity: Honesty and strength of will to make a safety-conscious decision even when it is not popular. 
34 Applicable to any activity in any process in the organization that is influenced by its management. 
35 A comprehensive safety-governance structure that includes the higher levels of management. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-culture- Description 

ID 
H-culture- Description 

4.1 Diminished team ability to seek and 
use intellectual diversity. 

4.1G1 Avoid negative behavior and encourage 
expression of diverse viewpoints, as 
explained in Appendix F.4.3. 

5 Management reacts only when 
there is a problem in the field. 
(Adapted from Annex B in [21]) 

5G1 Safety and quality issues are discovered 
and resolved at the earliest stage in the 
product lifecycle. See Appendix F. 

5G2 The organizational culture has a strongly 
established master premise of “safety” as 
the basis for decisions and daily activity. 
This becomes the guiding premise for 
analyzing and reducing the hazard space. 
See Appendix F. 

6 The quality and quantity of the 
required resources are not planned 
or allocated in a timely manner. 

6G1 Resources required36 are estimated with 
adequate accuracy37 in a timely manner. 

6G2 The required resources are allocated in 
time. 

6G3 Skilled resources have the necessary 
competence to perform the assigned 
activity. [H-0-2G1; H-SRE-1G{1, 2, 
and 3}] 

6G4 Teams ensure that their knowledge and 
mental models are properly considered 
by using communication processes that 
improve collective mindfulness. See 
Appendix F.4. 

7 A critical cognitive task is 
interrupted to switch its assignee 
across multiple tasks; such 
interruptions could increase the 
potential for mistakes, thereby 
increasing the potential fault space 
or contributory hazard space. 
(Adapted from Annex B in [21].) 

7G1 Run critical cognitive tasks to completion 
(and make this the default practice of the 
organization). Interruption is allowed only 
when the task has progressed to a stable, 
well-understood state, so that the 
interruption does not increase the hazard 
space. 

8 Processes do not produce 
deterministic, predictable results. 

8G1 A defined, documented, and disciplined 
process is followed in all dimensions at all 
levels, as needed for consistent 
achievement of safety; for example: 
1. Management 
2. Engineering 
3. Procurement 
4. Verification 
5. Validation 
6. Safety assessment 
7. Safety audit 

                                                 
36 Such as the type of competence, degree or level of competence or proficiency, and the amount of effort 
and time. 
37 Implied constraint: Processes are adequately designed and controlled. [H-0-9G1, H-culture-8G1, and 
H-OTproc-1G] 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-culture- Description 

ID 
H-culture- Description 
8G2 The organization follows disciplined 

communication and cognitive processes 
to achieve collective mindfulness, to know 
when to adjust and adapt the 
standardized processes, and to learn 
from the shortcomings. See Sections F.2 
and F.4 of Appendix F. 

9 When system lifecycle activities are 
distributed across multiple 
organizations or parts of the same 
organization, safety-relevant 
information38 is not communicated 
efficiently, letting key items of 
information “fall through the 
cracks.” 
See note at end of table. 
[H-SRE-7↓] 
 

9G1 Cross-organizational dependencies are 
understood clearly. 
Also see H-culture-8G2. 

9G1.1 The organization maintains 
cross-organizational connections that 
improve collective mindfulness (for 
example, by using working groups). See 
Appendix F. 

9G2 Organizational culture promotes open 
collaborative communications across 
boundaries to realize a system that 
achieves its safety goals. 
See H-culture-{12G2 and 12G3}. 

9G3 Decomposition of safety goals from NPP 
level analysis and allocation to 
safety-related systems is complete, 
correct, consistent, and unambiguous. 

10 Mistakes are repeated. 10G1 Continuous improvement is integral to all 
processes. See Section F.4 in 
Appendix F. 

11 Heavy dependence on testing39 at 
the end of the product development 
cycle. 
By that stage: 
1. It often becomes infeasible to 

correct the problem soundly. 
2. Patches increase complexity and 

impair verifiability. 

11G1 H-culture-5G1 
11G2 Technical processes are designed to 

prevent safety and quality issues as early 
in the development lifecycle as possible. 
See Appendix F. 

11G3 Processes for safety, quality, V&V, and 
configuration control are planned40 and 
designed to prevent and discover safety 
and quality issues as early in the 
development lifecycle as possible. 
See H-culture-{12G2 and 12G3} and 
Section F.2 of Appendix F. 

12 Dependence on implicit information 
(including implicit assumptions). 
[H-ProcState-4↑] and [H-SR-11↓] 

12G1 All information on which assurability of 
safety depends is explicit and 
configuration-controlled. 

                                                 
38 Implied constraint: H-0-9G1 
39 It is unlikely that testing as the only means of verification will suffice. 
40 Examples of work products: The safety plan, quality plan, and V&V plan, including plan for 
demonstrating completeness of coverage. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-culture- Description 

ID 
H-culture- Description 
12G2 Even while making information explicit 

and unambiguous, the organization 
maintains collective mindfulness by 
persisting in the evaluation of mental 
models and the development of more 
accurate and nuanced mental models. 
This necessarily involves continuous 
situational awareness of the context and 
involves the cultivation of diverse 
perspectives. See Appendix F. 

12G3 The organization establishes a system for 
tracking the bases and premises of 
engineering decisions. See Section F.2 of 
Appendix F and Appendix J. 

Note for H-culture-9: The quality of cross-disciplinary, cross-organizational communications is affected 
by stretched lines of communication across the NPP operator (the utility licensee), the supplier of the 
plant, the supplier of the DI&C system, and the supplier of components of the DI&C system. 

2.3 Evaluation of hazard analysis—technical processes 

Improperly designed or executed technical processes can lead to deficiencies in a system. 
Examples of technical processes include, but are not limited to the following: 

• Requirements engineering—see Section 2.5. 
• Architecture engineering—see Section 2.6. 
• Detailed design—see Section 2.8. 
• Implementation—see Section 2.9. 
• Verification activities by those performing these development activities. 
• Third-party verification. 
• Process assessment. 
• Process audit. 

Examples of some general contributory hazards and conditions to reduce the respective hazard 
spaces are given in Table 4 (adapted from Appendix A.1 in [20]), premised on the satisfaction of 
constraints identified in Table 3. 

Table 4: Examples of contributions to hazards through technical processes 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-OTproc-  Description 

ID 
H-OTproc- Description 

1 Technical processes are not 
deterministic [H-culture-8↑]; that 
is, correctness of results cannot 
be assured. 

1G The organization’s technical processes are 
defined to such a level of detail that, for 
each work element involved, there is a 
specification of the competence, tools, 
information, and other resources required 
(see Figure 4) to execute that work element 
correctly and to integrate the results of such 
work elements correctly [H-culture-8G1↑]. 
Also see [H-culture-8G2]. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-OTproc-  Description 

ID 
H-OTproc- Description 

2 Any process variable in any 
work element might contribute to 
some deficiency, if it is not 
adequately controlled. 
[H-OTproc-1↑] 

2G Each process variable in each work 
element is controlled and supported with 
the proper methods, tools, and competence 
to execute that work element correctly and 
to integrate the results of such work 
elements correctly. 
[H-OTproc-1G↑] (Figure 2 and Figure 4) 

3 Cognitive load (or intellectual 
complexity) imposed by a 
specified work element exceeds 
the capability of assigned 
personnel. See Note. 
[H-culture-6↑] 

3G1 The cognitive load imposed by a specified 
work element, including an integration 
activity, is assured to be well within the 
capability41 of personnel available to 
perform that activity. 
Also see [H-culture-6G3]. 

3.1 Difficulty of understanding the 
architecture (if it is inadequately 
described, for example) is a 
contributor to the cognitive load. 

3.1G1 The system architecture is analyzable and 
comprehensible. [H-OTProc-3G1↑], 
[H-S-1.1G1↓], and [H-S-2G6↓]. 

4 Mistakes occur42 (leading to 
deficiencies in the system); 
however, technical processes 
are not designed with the 
necessary robustness and 
resilience to protect them from 
such mistakes. 

4G1 The organization’s technical processes 
include processes to detect and recover 
from mistakes (e.g., verification and audit). 
 

4G2 [H-culture-8G2]. 
 

5 The organization believes 
incorrectly that its processes are 
adequate, exposing it to 
unknown sources of deficiencies 
for which it cannot identify the 
causes. 

5G1 The process is assessed and certified 
independently. 

5G2 Qualified independent resources assess the 
process. 
[H-culture-6G1 and H-culture-6G2] 

5G3 [H-culture-8G2]. 
6 The processes in real-life 

execution deviate from the 
designed processes, resulting in 
exposure to unknown sources of 
deficiencies, for which it cannot 
identify the causes. 

6G1 [H-culture-{1G3.1 and 2G1.1} 
6G2 The process in execution is audited 

independently. 
6G3 Qualified resources are available to audit 

the process. 
6G4 [H-culture-6G4 and H-culture-8G2]. 

Also see and Appendix F.4. 

7 Less accumulated experience 
and reusable results than there 
are for the systems of the 
previous generation; for 
example, shorter lifecycles of 
implemented systems or 
configurations, leading to: 
• Less accumulated 

experience on the same item 
• Changing environments for 

the same item 

7G1 [H-0-9G1] 
H-culture-{2G1.1 and 8G1} 
H-OTproc-{1G and 2G} 

7G2 More rigorous analysis—see Table 1 and 
Table 3. 
 
Appropriately conservatively derived 
requirements and constraints. 

7G3 [H-culture-{8G2, 12G2, and 12G3}] 

                                                 
41 This may require certification of personnel through a standardized process. 
42 Perfection in human performance is not achievable – at least, not in a sustainable manner. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-OTproc-  Description 

ID 
H-OTproc- Description 

8 Engineering models lack 
adequate fidelity to reality; 
i.e., modeling abstractions are 
not sound. 

8G1 Modeling abstractions are validated. 
8G2 [H-culture-8G2] 

Note for H-OTproc-3: Increasing complexity [18] of systems, processes, and organizations (involving 
people from multiple organizations, multiple disciplines, and multiple locations) and increasing content of 
software (or other implementation of logic) are increasing the contribution to hazards from engineering 
activities; for example: 
• Requirements engineering (elaborated in Section 2.5; HA results in safety requirements & 

constraints). 
• Architecture engineering (elaborated in Section 2.6). 
• Software engineering (elaborated in Sections 2.6.4 and 2.8). 

2.4 Evaluation of Hazard Analysis—System Concept 
The system concept, sometimes known as the functional concept (of the intended system), is 
described in terms of the initial requirements associated with it and its relationship with its 
environment, including the boundary and the assumptions (see Appendix J) on which the 
concept is based. Sometimes, the associated requirements are embodied in a “concept of 
operations” document. Sometimes HA43 of a functional concept is called preliminary hazard 
analysis (PHA44); also see Appendix C.2. 

In practice, the degree of specificity of a system concept varies over a wide range; sometimes 
the initial concept is so vague that it leads to misunderstandings, lapses, or inconsistencies, 
which contribute to hazards. Application and evaluation of HA (Section 2.1) is most effective in 
the concept phase of a system-development lifecycle. Avoidance of these contributors to 
hazards (see Table 1 and Tasks T1 through T3 in Table 21) requires clear description and 
tracking of the evolving system concept and its relationship with its environment, as discussed 
in this section. 

2.4.1 Hazards associated with the environment of the DI&C system 
Hazards can be contributed through an ill-understood relationship between the conceived 
system and its environment, some examples of which are given in Table 5, Table 6, and 
Table 7. These tables also identify conditions that reduce the respective hazard spaces. 

Hazards (including contributory hazards) might originate in the environment of the analyzed 
DI&C system, might originate in the DI&C system, or might result from the interactions of the 
system and the environment. See Appendix E.4 for hazard sources from the physical 
environment. See Appendix E.5 for ways in which a DI&C system might affect its environment 
adversely. 

Section 2.4.1.1 includes examples of hazards related to interactions with the plant processes. 

Section 2.4.1.2 includes examples of hazards related to interactions with instruments, controls, 
and networks in the system’s environment. 
                                                 
43 It roughly corresponds to but is significantly broader than the HA mentioned in Table 1b in [10]. 
44 The concept and PHA are good candidates for discussion with the applicant before it submits the 
license application. 
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Section 2.4.1.3 includes examples of hazards contributed through the human-interaction aspect 
of the system’s environment. 

Section 2.4.2 includes examples of hazards contributed through deficiencies in the architectural 
concept. Conditions reducing the hazard space are applicable recursively to architecture inside 
the intended safety system in every phase in the development lifecycle (from conception to 
implementation), to every level in the system-architecture integration hierarchy, and to 
transformations from one level to another. 

2.4.1.1 Hazards related to interaction with plant processes 

Often, hazards arise from an inconsistency between the perceived process state and the real 
process state. Here, the term “process state” is used in the general sense; for example, the 
state of the nuclear reaction process, the state of some supporting physical process in the NPP, 
the state of control automation, the state of some instrument, or even the state of the 
degradation process of some device. Hazards can also arise from unanalyzed conditions in the 
joint behavior of the plant (including equipment and processes) and the safety system. Table 5 
shows examples of contributory hazards and conditions that reduce the respective hazard 
space. 

Table 5: Examples of contributions to hazards through interactions with the plant 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-Proc 
State- Description 

ID 
H-Proc 
State- Description 

1 The nature of change in some 
monitored physical 
phenomenon45 in the process 
of interest in the environment 
of the digital safety system is 
not well understood or not 
characterized correctly. 
Also see H-SR-23. 

1G1 The physical processes46 in the monitored 
phenomenon are modeled and represented 
correctly; for example: 

1G1.1 • Nature of variation over time 
1G1.2 • Dependencies on other phenomena 
1G2 The perceived state matches reality with the 

fidelity required in value and time. 

1.1 The temporal aspect of 
change in a continuously 
varying phenomenon is not 
well understood or not 
characterized correctly. 

1.1G1 Temporal behavior of a continuously varying 
phenomenon is characterized correctly so that 
timing requirements for monitoring it can be 
derived without loss of fidelity. This includes 
timing relationships across monitored 
phenomena. 

1.1G1.1 The physics of the phenomenon (e.g., dynamic 
behavior, including disturbances) is understood 
well and characterized mathematically. 

1.2 The temporal aspect of 
change in a sporadic 
phenomenon is not well 
understood or not 
characterized correctly. 

1.2G1 Requirements for reacting to sporadic events 
(e.g., sudden change) include the minimum 
inter-event arrival time, based on the physics of 
the event-generating process. 

1.2G2 Signal indicating event of interest is not filtered 
out. 

                                                 
45 Examples: Pressure, temperature, flow, and neutron-flux density. 
46 Examples: Energy conversion, equipment degradation, and component degradation. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-Proc 
State- Description 

ID 
H-Proc 
State- Description 
1.2G3 Signal indicating event of interest is not missed 

because of inadequate sampling, as 
determined through mathematical analysis. 

1.2G4 Capturing event of interest does not disrupt 
any other action on which a safety function 
depends. 

2 Unanalyzed joint behavior of 
the safety system and the 
plant equipment and 
processes degrades a safety 
function. 

2G1 Safety system and its environment, including 
the NPP equipment and processes, are 
analyzed as a coupled system with sufficiently 
deep models of the behaviors (e.g., processes, 
instruments, controls, and networks) to 
represent reality with fidelity47. 

3 Allocation of safety functions 
and properties from a system 
at a higher level of integration 
to a system at a lower level is 
not correct, complete, or 
consistent, or is ambiguous. 

3G1 Relationships with losses of concern are 
identified, and commensurate safety goals are 
explicitly formulated, in NPP-level analysis. 

3G2 Decomposition of safety goals into required 
safety functions (design bases) is complete, 
correct, consistent, and unambiguous. 

3G3 Allocation of safety requirements to 
safety-related systems48 is complete, correct, 
consistent, and unambiguous. Also see 
Table 9. 

3G4 Allocation of safety properties, including 
corresponding decomposition or flow-down or 
derivation of constraints, is complete, correct, 
and consistent. See Table 8 in Section 2.5.1.1. 

3G5 The boundary of the system being analyzed is 
well-defined with respect to its environment (in 
CP 2.1.3.2.1 in [12]). 

3G6 The interface to and interactions with the plant 
are specified and constrained in such a 
manner that the system is understandable 
[H-S-2↑], verifiable49 [H-S-1.1], and free from 
interference [H-SA-3]). Examples of elements 
in the environment include interfaces to and 
interactions with: 
1. Sensors 
2. Actuators 
3. Services needed; for example: 
3.1. Electricity 
3.2. Air flow 
3.3. Compressed air 
3.4. Water 
4. Human/machine interfaces 
4.1. Roles, responsibilities, and functions 
4.2. Procedures specifying 4.1 

                                                 
47 Traditional FMEA and FTA of I&C systems in the plant will not suffice, as noted elsewhere. 
48 If there are multiple levels of assembly (integration), this criterion applies to each level-pair. 
49 That is, satisfaction of the constraint or specification is verifiable by analyzing the system concept. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-Proc 
State- Description 

ID 
H-Proc 
State- Description 
3G7 Constraints on other elements in the 

environment of the system are explicit. 
3G8 Restrictions & constraints placed on the 

system are explicit; example constraints might 
be: 
1. Compatibility with existing systems. 
2. Compatibility with physical and natural 

environment. 
3. Protection against propagation of 

non-safety system faults and failures. 
4 Interactions of the system with 

its environment, including 
effects of assumptions, are not 
well-understood 
[H-ProcState-3↑]. 
See note. 
(In item 3 of Appendix A.3 to 
[20].) 
[H-culture-12↓] 

4G1 See: H-ProcState-3G7, H-culture-{12G2 
and 12G3}, and Appendix J. 

4G1.1 [H-culture-12G1↓] 
The organizational processes (Section 2.2) 
include explicit tasks or activities to validate 
each assumption in time to avoid adverse 
impact on the system safety properties and HA 
activities. 
Also see H-culture-{12G2 and 12G3}. 

4G1.2 If an assumption is found to be invalid or there 
is a change from the previous assumption: 

1. A corresponding change-impact analysis is 
performed. 

2. The affected part of the HA is repeated. 

3. Commensurate changes in constraints or 
requirements are identified. 

4. An analysis of the impact of those changes 
is performed. 

5. The change-impact analysis is an 
independently evaluated configuration 
item. 

4G2 Hazards from the physical environment are 
analyzed. See Appendix E.4. 

4G3 Hazards from the DI&C system to its 
environment are analyzed. See Appendix E.5. 

Note for H-ProcState-{3-4}: The intent of reviewing for these factors is to check that the system on 
which HA is to be performed and its context (environment) are correctly identified, the dependencies are 
correctly understood, the primary hazards (external and internal) are identified, and the commensurate 
constraints are identified. 
Note for H-ProcState-3: When a large complex system, such as an NPP (including its 
environment and processes for operation and maintenance) is decomposed into manageable 
subsystems and components, the constraints necessary to prevent the losses at the top level 
(e.g., NPP level) might become obscure. For example, subtle couplings across the decomposed 
elements might arise. In an evolving configuration of the overall (e.g., NPP-level) system, the 
boundary of the system being analyzed and assumptions (see Appendix J) about its 
environment might not be well-defined, leading to appropriate considerations “falling through the 
cracks.” 
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Figure 5 depicts a “progressive”50 migration from a normal operational-process state region 
(shown in green) to an unsafe state region (shown in red). Actions to avoid the unsafe state 
region (i.e., to effect safe recovery) need some time (shown as the brown region). To allow for 
the needed time, the temporal aspect of change in the monitored phenomena must be 
understood well and departure (shown in yellow) from normal operational state must be 
monitored. Intervention must be completed within this (yellow) region. 

 
 

2.4.1.2 Contributory hazards from NPP-wide I&C architecture 
The scope of NPP-wide system architecture includes the safety system under evaluation and its 
relationship with its environment; that is, all systems, elements, processes and conditions that 
support or affect the performance of a safety function. “Relationship” includes interfaces, 
interconnections, and interactions, whether these are direct, intended, explicit, static, “normal,” 
indirect, implicit, unintended, dynamic, or “abnormal.” Any relationship that affects the 
performance of a safety function is a dependency. HA of the NPP-wide I&C architecture should 
examine it for hazards relevant to the safety-related system to be analyzed. Figure 6 provides a 
simplified view. 

                                                 
50 Under the premise that degradation is not sudden or unpredictable and that its progression can be 
monitored. 
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Figure 5: Regions of state space for hazard analysis. 
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Constraints on the NPP-wide I&C architecture are derived from the quality51 attributes or 
properties of the safety-related system being analyzed. Quality attributes are discussed in 
Section 2.5.1.1, including in Table 8, which also applies to the NPP-wide I&C architecture. 

Note: Criteria for the evaluation of HA for the NPP-wide architecture are predicated on the 
correct and complete performance of HA, as illustrated in Table 1, including considerations 
of combinations of multiple contributory hazards as exemplified in Table 3 through Table 7. 

Table 13, derived from considerations in Table 8, also applies to the NPP-wide I&C architecture. 
in the context of hazards contributed through interference. 

 

 

 

2.4.1.3 Contributory hazards from human/machine interactions 
Hazards of the kind grouped in Table 1 through Table 5 could also affect human/automation 
interactions. 

The tables in this section supplement those with some examples of more specific hazards 
contributed through human/automation interactions (Table 6) and through inadequacies in the 
associated engineering (Table 7). 

                                                 
51 Other terms for these properties are “quality-of-service (QoS) properties” and “non-functional 
requirements.” 
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Figure 6: NPP-wide I&C architecture—allocation of functions in the concept phase. 
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Table 6: Examples of contributions to hazards through human/machine interactions 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-hmi- Description 

ID 
H-hmi- Description 

1 Inconsistency between 
human-perceived process 
state and real process state. 

1G1 Process state presented to the human accurately 
represents the real physical state in value and time. 

2 Inconsistency between 
human-perceived state of an 
instrument52 and real state of 
the instrument. 

2G1 Instrument (e.g., actuator) state presented to the 
human accurately represents the real physical state 
of the instrument in value and time. 

3 Mode confusion. 3G1 Human is notified of the current mode and a mode 
change in progress (the loop is closed with 
feedback). 

3G2 Human has a correct understanding of the 
mode-change model (that is, the human is equipped 
with correct mental model of the mode-switching 
behavior of the automation). 

3G3 Potential for mistaken interpretation of the 
information presented by the human/machine 
interface is eliminated. 

3G4 Either inconsistent behavior of automation is 
avoided or automation detects its inconsistency and 
notifies human. 

3G5 Unintended53 side effects are avoided. 
3.1 Confusion about line of 

authority (who or what entity 
is in control at the moment). 

3.1G1 Multiple concurrently active paths of control 
authority (logical control flow) are avoided. 

3.1G2 Change of mode by automation without human 
confirmation is avoided. 

3.1G3 Correct division of tasks is ensured through analysis 
of human tasks, including human/automation 
interactions. 

4 Inappropriate division and 
allocation of tasks between 
human and automation. 

4G1 H-OTproc-3G1. 

5 Normally useful cognitive 
processes are defeated or 
fooled by a particular 
combination of conditions [6] 
[9] [18]. 

5G1 See H-hmi-6G1. 

6 Human mental model of how 
the system works is not 
consistent with the reality. 

6G1 “How the system works” (the information needed by 
operating personnel about its behavior and needed 
human/automation interaction) is described clearly, 
including behavior and human/automation 
interaction under all combinations of off-normal 
conditions (e.g., in the presence of a fault). 

                                                 
52 For example, a sensor or actuator. 
53 Any intended effect is explicit (e.g., as a part of the specification) and is analyzed for its effect on a 
safety function. 
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Table 7: Examples of contributions to hazards through human/machine interaction engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-hmiP- Description 

ID 
H-hmiP- Description 

1 Loss of information across disciplines 
(e.g., automation engineering, 
human-factors engineering, and 
control-room design). 
[H-culture-9↑ and H-SR-3↑] 

1G1 System is engineered holistically, 
including crosscutting analysis. 
(Adapted from footnote 82 in 
Appendix A.3 to [20].) 

2 Confusing human/machine interface 
design. 

2G2 H-hmi-3G3. 

3 Cognitive overload. 3G3 H-OTproc-3G1. 

2.4.2 Contributory hazards in conceptual architecture 
The term “conceptual architecture” refers to the architecture of the system concept as it evolves 
in relation to its environment (also see Section 2.4.1.2). 

Here, the focus shifts from the interactions of the conceived system with the environment to its 
internal architecture, as driven by the requirements allocated to it; that is, the interrelationships 
of the various requirements and constraints to be satisfied by the conceived system. The 
information in Table 8 and Table 13 is applicable to the conceptual architecture, especially with 
respect to the following concerns: 

1. Freedom from interference across redundant divisions [item 2↑ of H-SA-3G3 in Table 13]. 

2. Freedom from interference between a monitoring element and its monitored element 
[item 4↑ of H-SA-3G3 in Table 13]. 

3. Compromise of redundancy through a dependency (e.g., input data or resource sharing). 
Also see items H-0-8 and H-0-9 in Table 1. 

4. Compromise of redundancy in the concept of voting54 logic. 

The conditions (to reduce the respective hazard spaces) provided in Table 8 and Table 13 apply 
recursively to the most finely grained level of the system architecture and recursively to the most 
finely grained level of the software architecture. These conditions also apply to the mappings 
(e.g., through composition and decomposition) from one level to another in the architecture 
hierarchy55 and through all stages of derivation of requirements & constraints and the 
subsequent development lifecycle stages (e.g., detailed design and implementation). 

2.4.3 Contributory hazards from conceptualization processes 
Some hazards contributed through weaknesses in the cultural and general technical processes 
of the organization (Table 3 and Table 4), which were introduced in Section 2.2, strongly apply 
to the concept phase of the system-development lifecycle. 

Requirements engineering (Section 2.5) and architectural engineering (Section 2.6) apply to the 
concept phase also—see Table 12, Table 13, and Table 14. 

                                                 
54 Example: In a quad-redundant system for a space system, four computers were connected by a 
multiplexer/demultiplexer module. A diode in the interconnections failed in such an unanticipated way that 
the condition was not sensed in the same way by the four computers. (In footnote 84 in Appendix A.3 
to [20].) 
55 The mapping could contribute a hazard because some abstractions can mask problems. 
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Planning the rest of the development lifecycle goes hand in hand with the conceptualization, as 
stated in tasks T1 through T3 in Table 21 in Appendix C.3. 

2.5 Evaluation of hazard analysis—Requirements 
Experiences of many critical application domains have shown that identifying valid requirements 
for a critical digital safety system  is one of the weakest links in the overall engineering process. 
Inadequacy in requirements is one of the most common causes of a system failing to meet 
expectations. Failures traceable to shortcomings in requirements cannot be caught through 
such verification activities as simulation and testing alone. Formal methods do not help in 
understanding intent or eliciting missing requirements when the intent is not clear [20]. For a 
safety system, requirements and constraints emerge from hazard analysis and are validated 
through independent hazard analysis. Although initial requirements for a digital safety system 
come from a higher level of integration (e.g., from a NPP-level safety analysis), additional 
requirements and constraints are discovered at every phase of the development lifecycle. 

2.5.1 System Requirements 
In the general context of systems engineering, the specification of a primary function, valued 
and required by its user, is called a functional requirement. In the context of digital safety 
systems, example groups of functional requirements include (but are not limited to) monitoring 
departure from a safe state, detecting threshold for intervention, and intervention for mitigating 
the consequence of departure from safe state. Key prerequisite activities for identifying safety 
requirements were discussed in Sections 2.1 (overall hazard analysis and understanding 
dependencies leading to loss events) and 2.4.1 (understanding hazards in relation to the 
environment of the safety system, including hazards contributed from inadequate definition of 
the boundary of the safety system, from invalid assumptions (see Appendix J), and from 
interactions with other systems and humans). The analysis reviewed in those sections 
contributes to an early stage of requirements engineering. Given the requirements resulting 
from those analytical activities, Section 2.5.1.1 introduces the concept of associated quality 
requirements. Section 2.5.1.1 also introduces the concept of derived quality characteristics or 
requirements in an organizing framework, known as a “quality model” [22]. Section 2.5.1.2 
identifies some common weaknesses in formulating verifiable requirements and Section 2.5.1.3 
identifies some common weaknesses in the associated requirements-engineering processes. 

2.5.1.1 Quality requirements 
Figure 7 shows two categories of requirements – functional and quality requirements [22]. In 
general, a functional requirement may be associated with one or more quality requirement or 
constraint; for example, in the context of this RIL, SAFETY and SECURITY are top-level quality 
requirements, which depend upon other constraints or required characteristics, as shown in 
Figure 8 (the connectors represent dependency relationships). 
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In a regulated environment, the SAFETY property should be assurable independently. Then, as 
shown in Figure 8, “Assurability” is a required attribute56. Figure 8 also shows other quality 
attributes upon which “Assurability” depends. The corresponding quality requirements may also 
be viewed as constraints to be satisfied by the digital safety system; that is, constraints on the 
solution space (also known as design space), which eliminate from further consideration those 
system concepts that do not satisfy these constraints. In other words, these constraints reduce 
the hazard space in the design space. Table 8 shows the logical derivation of these constraints, 
corresponding to the relationships shown in Figure 8; the reasoning is explained below: 

1. To be able to assure that a system is safe, one must be able to verify that it meets all of its 
safety requirements. [H-S-1] 

2. For a system to be verifiable, it must not be possible for one element of the system to 
interfere with another. [H-SA-3] 

3. If the conceived system is too complex, adequate verification is infeasible. [H-S-1.1] 

4. If it is too complex, one cannot understand it. [H-OTproc-3G1] 

5. If one cannot even understand it, how can one assure that it is safe? [H-S-2] 

6. Verifiability is a required system property, flowing down from the system to its elements 
(constituents) and progressing to the most finely grained element; it implies corresponding 
verifiable specifications. Verification also includes analysis at various phases in the 
development lifecycle, well before57 an artifact is available for physical testing. Examples of 
conditions for verifiability include: 
6.1. Ability to create a test (or verification) case to verify the requirement. 

6.1.1. Observability 
                                                 
56 It distinguishes regulated safety systems from non-critical systems such as those for entertainment. 
57 This is known as “static analysis” when it is performed on a computer program (code). However, 
analysis in the same “static” sense can also be performed on work products of earlier phases (e.g., on 
models). [H-S-1.1.1] 

Quality requirements  Quality requirements  

Figure 7: Quality requirements should be explicit. 
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6.2. Ability to constrain the environment of the object of verification. 
7.  For “analyzability,” the system must have predictable and deterministic58 behavior. [H-S-1.2] 

 

 
 

Table 8: Examples of contributions to hazards through quality attributes 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-S- Description 

ID 
H-S- Description 

1 The system is not sufficiently verifiable 
and understandable, but this deficiency 
is discovered too late. Appropriate 
considerations and criteria are not 
formulated at the beginning of the 
development lifecycle; therefore, 
corresponding architectural constraints 
are not formalized and checked. When 
work products are available for testing, it 
is discovered that adequate testing is 
not feasible (e.g., the duration, effort, 
and cost are beyond the project’s 
limitations). 

1G1 Verifiability is a required system property, 
flowing down from the system to its 
constituents and progressing to the most 
finely grained element. 
(Adapted from CP 2.2.3.11 in [12].) 
[H-S-1.1G1↓] 

1G1.1 Verifiability of a work product is checked at 
every phase of the development lifecycle, 
at every level of integration, before 
proceeding further in the development. 

1.1 System is not verifiable (e.g., it is not 
analyzable or very difficult to analyze). 

1.1G1 Avoidance of unnecessary59 complexity. 
1.1G1.1 The behavior is unambiguously specified 

for every combination of inputs (including 
unexpected inputs) at every level of 
integration in the system (in item 4 in 
Section A.4 of Appendix A to [20]). 

1.1G1.2 The flowdown ensures that: 
1. Allocated behaviors satisfy the 

behavior specified at the next higher 
level of integration. 

2. Unspecified behavior does not occur. 
                                                 
58 Yields deterministic results. 
59 Defined as complexity that is not essential to support a safety function. 
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Figure 8: Quality characteristics to support safety. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-S- Description 

ID 
H-S- Description 
1.1G1.3 The behavior of the system is composed of 

the behaviors of its elements in such a way 
that when all of the elements are verified 
individually, their compositions may also be 
considered verified60. This property is 
satisfied at each level of integration, 
flowing down to the most finely grained 
element in the system. 

1.1G1.4 Development follows a refinement process. 
1.1.1 Unanalyzed or unanalyzable conditions 

exist. For example, not all system 
states, including unwanted ones such as 
fault states, are known and explicit. To 
that extent, verification and validation 
(V&V) of the system is infeasible. 
[H-S-1.1↑] 

1.1.1G1 Static analyzability: System is statically 
analyzable. 
1. All states, including fault conditions, are 

known. 
2. All fault states that lead to failure modes 

are known (in the first item of 
CP 2.2.3.14 in [12]). 

3. The safe-state space of the system is 
known (in the second item of 
CP 2.2.3.14 in [12]). 

1.1.2 There is inadequate evidence of 
verifiability. [H-S-1.1↑] 

1.1.2G1 Verification plan shows the coverage 
needed for safety assurance. 

1.2 System behavior is not deterministic61. 
[H-S-1.1.1↑] 

1.2G1 System has a defined initial state. 
1.2G2 System is always in a known configuration. 
1.2G3 System is in a known state at all times 

(e.g., through positive62 monitoring and 
indication): 
1. Initiation of function 
2. Completion of function (in the last item of 

CP 2.1.3.4 in [12]) 
3. An intermediate state, where one is 

needed to maintain a safe state in case 
of a malfunction. 

1.3 System behavior is not predictable. 
[H-S-1.1.1↑] 

1.3G1 Each transition from a current state 
(including initial state) to some next state is 
specified and known, including transitions 
corresponding to unexpected combinations 
of inputs and transition conditions. 

1.3G2 A hazardous condition can be detected in 
time to keep the system in a safe state. (in 
the third item of CP 2.2.3.14 in [12]). 

                                                 
60 No unspecified behavior emerges. 
61 Does not yield deterministic results. 
62 If indirect indication or inference is used, HA confirms satisfaction of H-ProcState-1G1.2. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-S- Description 

ID 
H-S- Description 

2 Comprehensibility: System behavior is 
not interpreted correctly and consistently 
by its community of users 
(e.g., reviewers, architects, designers, 
and implementers); that is, the people 
and the tools they use. 
[H-S-1↑] 

2G1 Behavior is completely and explicitly 
specified. (See note) Also see 
H-culture-{12G2 and 12G3}. 

2G2 The system is simple enough (not too 
complex) to be understood in the same 
meaning by its community of users. 

2G3 Behavior is understood or interpreted 
completely, correctly, consistently, and 
unambiguously by different users 
interacting with the system. Also see 
H-culture-{12G2 and 12G3}. 

2G4 The allocation of requirements to some 
function and the allocation of that function 
to some element of the system are 
bidirectionally63 traceable. (in item 2 of 
Section A.4 of Appendix A to [20]). 

2G5 The behavior specification avoids mode 
confusion, especially when functionality is 
nested (in item 3 of Section A.4 of 
Appendix A to [20]). 

2G6 The architecture is specified in a manner 
(e.g., through its language and structure) 
that is unambiguously interpretable by  the 
community of its users (e.g., reviewers, 
architects, designers, implementers), that 
is, the people and the tools they use (in 
item 9 of Section A.4 of Appendix A 
to [20]). 

Note for H-S-2G1: Sometimes, experts can understand implicit meaning. However,  explicit information is 
needed for machine interpretation (i.e., through tools). 

Considering that the state of practice is especially weak in the derivation of verifiable constraints 
from quality requirements, a careful review is needed. The architecture should satisfy these 
constraints, starting from the system concept phase and continuing at every successive phase 
of development and decomposition, including all phases of the software development lifecycle. 
Commensurate architectural constraints are identified in Section 2.6. 

2.5.1.2 Contributory hazards through inadequate system requirements 
Activities leading to identification of functional requirements for safety were introduced in 
Sections 2.1 (overall hazard analysis, including understanding of dependencies leading to a loss 
event or degradation of a safety function) and 2.4.1 (understanding hazards in relation to the 
environment of the safety system, including hazards contributed from inadequate definition of 
the boundary of the safety system, from invalid assumptions (see Appendix J), and from 
interactions with other systems and people). Table 9 identifies further contributory hazards 
resulting from weaknesses in identifying and formulating requirements. The content of Table 9 is 

                                                 
63 This does not imply that one-to-one relationships are necessary. 
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adapted mostly from Section A.3 of Appendix A to [20]; other sources are cited within the 
respective item in Table 9. For hazards contributed through weaknesses in interfaces and 
interactions across elements of the system, see Section 2.6.1. 

Table 9: Examples of contributions to hazards through inadequate system requirements 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SR- Description 

ID 
H-SR- Description 

1 Mistakes occur because 
the environment is 
misunderstood. 

1G1 [H-SRE-{1G1, 1G2, and 1G3}↓]. 
See H-culture-{4G1, 4G2, 4G3 and 6G3}; 
Subsections C.3.2 and C.3.3 of Appendix C; and 
Appendix F, especially Section F.1. 

2 Input constraints are 
misunderstood or 
improperly captured. 
[H-SR-1↑] 

2G1 [H-SRE-{1G1, 1G2, and 1G3}↓]. 
See H-culture-{4G1, 4G2, 4G3 and 6G3}; 
Subsections C.3.2 and C.3.3 of Appendix C; and 
Appendix F, especially Section F.1. 

2G2 Criteria for input validation are correctly established. 
See Sections F.2 and F.4 of Appendix F. 

3 Incomplete requirements. 3G1 See Table 1. 
3G2 H-ProcState-3G5. 
3G3 HA includes interactions with the environment of the 

system; see Section 2.4.1. 
3G4 Interrelationships and interactions with the environment 

are analyzed in all configurations and modes (including 
degraded ones) and through all changes from one 
mode to another. [H-SR-3G3↑] 

3G5 In HA at the system concept phase (Section 2.4), an 
architectural model or representation of the system 
(functional or behavioral) concept includes a (functional 
or behavioral) model or representation of the 
environment, especially of the physical processes 
(Appendix H in [23]). 
[H-SR-3G3↑ and H-SAE-{1G1, 2G1, 3G1, and 4G1}↓] 

3G6 Process behavior models64 (H-SR-3G5) include 
identification of safe-state regions and the trajectory65 of 
safely recoverable process states. See Figure 5 
and [23]. 

3G7 Process behavior models (H-SR-3G5) include time 
dependencies, relationships and constraints. [14] . Also 
see Table 5 and Appendix I. 

3G8 [H-SRE-{1G1, 1G2, and 1G3}↓]. 

                                                 
64 The scope is limited to I&C relevance. 
65 The state space within which recovery is provable. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SR- Description 

ID 
H-SR- Description 

4 Inadequate protection or 
defense against latent 
faults. 
[H-SR-3↑]. 
Note tension with 
[H-SR-20]. 

4G1 Monitoring: Feasible trajectories66 of appropriate state 
variables67 or parameters and expected values are 
known and monitored. 
(Generalized from CPs 2.1.3.2.3 and 2.1.3.2.4 in [12].) 

4G2 Detection: Appropriate parameters of the system or 
element are monitored to detect departure from safe 
state (e.g., by applying discriminating68 logic on the 
monitored parameters) in conjunction with predictive 
behavior models, but considering [H-SR-{19 and 20}] 

4G3 Intervention: On detection of departure from safe state, 
intervention is performed to keep the plant in safe state. 
(Adapted from CP 2.2.3.7 in [12].) 

4G4 Containment: The system or element is able to contain, 
localize, and isolate the source of the fault (e.g., a 
hardware or software component). 

4G5 Notification: Notification is timely, but avoids overload69. 
4G6 [H-SRE-{1G1, 1G2, and 1G3}↓] 

5 Inadequate identification 
of sources of uncertainty, 
their effects, and their 
mitigation. [H-SR-3↑] 

5G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

6 Deficiency in 
requirements for fault 
containment. [H-SR-3↑] 

6G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

7 Inadequate or improper 
generalization to capture 
classes of issues. 

7G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 
See H-culture-{4G1, 4G2, 4G3, 4G4, and 6G3} and 
Appendix F, especially Section F.1. 

8 Inconsistent 
requirements. 

8G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

9 Inadequate protection or 
defense against invalid 
input. 
[H-SR-4↑] 

9G1 See H-SR-2G2 
 The validity of the value of each input is monitored (in 

CP 2.1.3.2.4 in [12]). 
9G2 Intervention on detecting invalid input is specified in 

order to keep the system in a safe state. 
10 Instrumentation errors 

are uncorrected or 
inadequately 
compensated for. 

10G1 Required calibrations and corrections are known and 
applied (generalized from CP 2.1.3.2.5 in [12]). 
[H-SR-9G1↑] 

11 Implicit assumptions 
about the environment. 
[H-culture-12↑] 

11G1 Each assumption about the environment is made 
explicit (e.g., documented; in item 3 in Appendix A.3 
to [20]). See Appendix J. 
[H-culture-{12G1-12G3}↑] 

12 Invalid assumption about 
the environment. 

12G1 See Appendix J, H-culture-12G3, Appendix C.3.3, and 
Appendix F.2. 

                                                 
66 For example, values over time and rates of change. 
67 Include inputs and outputs. 
68 For example, detect infeasible or unexpected values. 
69 A single event may cause many deviations crossing monitoring thersholds. However, if their 
communication is not managed, it may overload system resources or the operator. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SR- Description 

ID 
H-SR- Description 
12G2 Each assumption about the environment is validated 

(e.g., through treatment as a “constraint or condition to 
be validated”). 

13 Unclear expression of the 
consequences of an 
assumption. 
[Table 1][H-SR-12↑] 

13G1 The record of each assumption [H-SR-12G1] includes 
the consequences if the assumption turns out to be 
false. (In item 4 in Appendix A.3 to [20].) Also see 
Appendix J. 

13G2 Requirements include measures to mitigate the 
consequences of assumptions that fail to hold. (In 
item 4 in Appendix A.3 to [20].) 

13G3 Each assumption (e.g., constraint or condition to be 
validated) is tracked as a configuration item. 

13G4 Assumptions about the downstream design are made 
explicit (e.g., through explicit derived requirements or 
constraints on the architecture, design, and 
implementation and on the associated methods and 
tools). (In item 3.1 in Appendix A.3 to [20]) See: 
Appendix J and H-culture-{12G2 and 12G3}. Examples: 
1. Requirements from the application software on 

system platform services (hardware (HW) and 
software (SW), including HW and SW resources to 
support the workload). 

2. Timing constraints to be satisfied. 
3. Compatibility across maintenance updates. 

13G4.1 The safety plan and supporting plans include activities 
and tasks specifying how and when these assumptions 
will be validated. 

14 Unmitigated 
consequence of invalid 
assumption. 

14G1 The record of each assumption [H-SR-12G1] includes 
how and when it will be validated. (In item 3 in 
Appendix A.3 to [20].) 

15 Incorrect order of 
execution or timing 
behavior.  
[H-ProcState-1.1] 
[H-ProcState-1.2] 

15G1 An explicit, verifiable (as determined through 
mathematical analysis) specification of the order of 
execution and timing interrelationships; the specification 
includes considerations for multiple concurrent physical 
processes, inter-process synchronization, and shared 
resources (in CPs 2.1.3.2.2 and 2.2.3.5 in [12]). See 
Appendix I. 

16 Interrelationships and 
interdependence across 
requirements are not 
clearly understood or 
recognized [H-0-6 
through H-0-8], resulting 
in unanalyzed conditions. 

16G1 Applicable types of dependencies across requirements 
are identified (see examples herein), modeled, and 
tracked. For example, if A and B are two requirements, 
their relationship types (see note) may be: 
• A requires B 
• B supports A 
• B hinders A 
• B is a selection for A (an exclusive one among 

many choices) 
• B is a specialization of A 

16G2 Hidden dependencies between functions 
(e.g., “unwanted feature interactions”) do not exist. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SR- Description 

ID 
H-SR- Description 

17 Interference from 
unintended interactions 
or side effects. [H-S-1↑]. 
See Table 2. 

17G1 Interactions are limited provably70 to those required for 
the safety functions. 

17G2 Verifiable constraints are specified to prevent 
unspecified behavior or side effects. 

18 Effects of sudden 
hardware71 failure, 
especially failure of 
semiconductors. 

18G1 Requirements include failure or fault detection and 
containment measures, including offline ability to locate 
and isolate the source of the fault (e.g., a hardware or 
software component). [H-SRE-7G1↓] 

19 Allocated set of 
requirements leads to 
conditions that are 
unanalyzable or difficult 
to analyze. 

19G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

20 Adding backups (or fault 
protection) can introduce 
new hidden 
dependencies and impair 
analyzability. [H-SR-19↑] 

20G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

21 Layers of protection 
against software faults 
might impair analyzability.  
[H-SR-19↑] 

21G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 

22 Inability to correctly 
integrate elements of a 
system 
(e.g., subsystems, 
hardware components, or 
software components). 
[H-SR-{1, 2, 3, 8, 12, 13, 
15, 16, and 19}↓] 
[H-SwR-2↓] 
[H-SRE-7↓] 
[H-SwRE-1↓] 
[H-HwP-1↓] 

22G1 [H-SRE-{1G1, 1G2, and 1G3}↓] 
[Table 14↓] 

22G2 There are no deficiencies in the specifications. 
22G3 There are no deficiencies in the elements to be 

integrated. 
22G4 The system is modularized properly so that its 

correctness can be concluded from the correctness of 
the architecture and the correctness of the elements. 
[H-S-1.1G1.4↑] 

23 Anomaly in the state of 
the process72 is not 
recognized or identified 
or correctly understood or 
correctly specified. 
[H-SR-3↑] 
[H-SR-4↑] 

23G1 See H-SR-3G6. 
The trajectory of safely recoverable process-state 
variables (i.e., state space within which recovery is 
provable) is specified correctly. 

In other words, when departure from this state space or 
region is recognized, intervention can prevent departure 
from the safe state. See Figure 5. 

Also see Appendix F. 
Note for H-SR-16G1: Relationships may be one-to-one, one-to-many, many-to-one, and many-to-many. 

                                                 
70 It is possible to show that unspecified interactions cannot occur. 
71 Also see Table 17. 
72 The process that the safety system is observing or monitoring for safety-related intervention. 
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2.5.1.3 Contributory hazards from system-requirements engineering 
The requirements-engineering phase of the lifecycle is most sensitive to the quality of 
processes, including the resources applied. Requirements elicitation and analysis aspects are 
most sensitive to the competence [H-SRE-1] applied. 

Table 10 identifies hazards contributed through weaknesses in the process of engineering 
requirements for the system. 

Table 10: Examples of contributions to hazards through inadequate system-requirements 
engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SRE- Description 

ID 
H-SRE- Description 

1 Inadequate 
competence. 
[H-culture-6↑] 
 

1G1 The team engaged in these activities is a group with high 
competence in multiple disciplines, capable of creatively 
eliciting and synthesizing information from diverse sources, 
including implicit, experiential knowledge about the 
environment. The combined competence of the team 
matches the expertise needed in each phase of the 
engineering lifecycles. (See note). 
See H-culture-{4G2, 4G3} and Appendix F. 

1G2 A different and independent diverse team reviews the 
requirements and their validation. 

1G3 The review team has expertise in discovering the types of 
mistakes or shortcomings identified in Table 9 and Table 10 
[H-SRE-{2 through 6}]. 
See H-culture-6G3 and item 5 of Appendix F.1. 

2 Ambiguity in the 
natural-language 
textual description. 
[H-SAE-2↓] 

2G1 A subset of the natural language is used in order to 
unambiguously describe requirements to the community of 
users73 of the system and the requirements. This subset 
features, for example: 
1. A closed set of language elements. 
2. Unambiguous semantics for each language element. 
3. Unambiguous compositions of language elements and 

compositions of compositions. 
Also see H-culture-{12G2 and 12G3}. 
[H-SAE-1G1↓ and H-SAE-1G2↓] 

2G1.1 Formal properties are abstracted for later use in verification 
of the next phase of the work product. [24][25] 

                                                 
73 Users include people employed in creation, modification, interpretation, transformation. maintenance, 
V&V, and regulation (adapted from the last sentence of CP 2.3.3.1.1 in [12]) and the tools they use (i.e., 
the language should be unambigious to the tools for the functions allocated to them). 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SRE- Description 

ID 
H-SRE- Description 
2G2 The language subset (H-SRE-2G1) supports distinct 

identification and description of the following: 
1. Assumptions about the environment [23]; Appendix J. 
2. Input from the environment such as a command (that is, 

some signal requiring a state-changing effect plus 
required behavior), query, process state, or other data. 

3. Output (for example, some signal having state-changing 
effect, or state notification, or exception notification). 

4. Functions assigned to a human. 
5. Procedure for the execution of each function assigned to 

a human (required behavior). 
6. Other elements of the system being analyzed. 
7. Functions assigned to each element; required behavior. 
8. Interactions required across elements. 
9. Constraints on the behavior and interactions of each 

element; e.g., timing constraints ([14] and Appendix I) 
and quality-of-service (QoS) constraints. 

10. Criteria to monitor and detect violation of a 
constraint [21]. 

3 Incorrect 
formalization from 
intent or 
natural-language 
text 

3G1 [H-SRE-2G1↓ and H-SRE-2G2↓] [H-SAE-1G1↓ and 
H-SAE-1G2↓] 

3G2 Persons performing the task (see H-SRE-2G1.1) know the 
vocabulary of the application domain and know how to 
translate it into formal properties. 

3G3 1. Multiple independent persons/teams perform the task. 
2. The discrepancies across their results are analyzed. 
3. Another independent panel is engaged in resolving the 

discrepancies. 
4 Input constraints 

are ambiguous. 
4G1 Valid value type and range of each input are explicitly 

identified (in CP 2.1.3.2.4 in [12]). Also see Table 1 and 
H-culture-{12G2 and 12G3}. 

5 Loss of information 
in transfer and 
traceability of 
HA results to 
requirements. 

5G1 Activities of HA and Requirements Engineering are formally 
integrated (also see Table 1). 

6 An atomic 
requirement is not 
traceable 
individually. 

6G1 Each atomic requirement is traceable (in CP 2.1.3.1 in [12] 
and in item 2 in Section A.4 of Appendix A to [20]). 
[H-S-2G4↓] 

6G2 Each requirement is a configuration-controlled item.74 

                                                 
74 Other relevant references: IEEE 828, “IEEE Standard for Configuration Management in Systems and 
Software Engineering,” and IEEE 1042, “IEEE Guide to Software Configuration Management.” 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SRE- Description 

ID 
H-SRE- Description 

7 Loss of 
information75 
across disciplines, 
processes, and 
organizational units 
(e.g., system 
engineering, 
software 
engineering, 
hardware 
engineering, safety, 
and quality). 
[H-culture-9↑] 
[H-SR-3↑] 
[H-SwRE-1↓] 

7G1 Systems are engineered holistically, including crosscutting 
analysis. (Adapted from footnote 82 in Section A.3 of 
Appendix A to [20].) 
See H-culture-9G1, H-culture-9G2, and Section F.1 of 
Appendix F. 

7G1.1 The interaction across a system or an element and its 
environment is identified explicitly. 
Example: Models at every level of integration are compatible 
with one another and information can be integrated and 
analyzed across the various models. 
See H-culture-{12G1, 12G2, and 12G3}. 

  

Note for H-SRE-1G1: The types of expertise that the team will require might differ from phase to phase. 

2.5.2 Software Requirements 
Contributions to hazards through inadequacies in requirements at the system level (and 
corresponding conditions to reduce that hazard space) also apply to requirements for software. 
Even though correct, complete, and consistent unambiguous requirements for software are 
supposed to flow down from the system engineering lifecycle, typically (in practice) V&V for 
these properties occurs from the software engineering perspective76 as a part of the software 
engineering lifecycle. 

Some of the requirements from the system engineering lifecycle may be allocated directly (as is) 
to software. For other requirements from the system engineering lifecycle (e.g., quality 
requirements), additional requirements and constraints for software may be derived as part of 
the software engineering lifecycle. Also see Section 2.6 for constraints on software architecture. 
Contributory hazards and constraints identified in Section 2.6.1 for the system architecture also 
apply to software. Derived constraints on software design and implementation are included in 
Sections 2.8 and 2.9. 

                                                 
75 Current practice divides systems engineers, software engineers, and hardware engineers; often failures 
occur due to gaps between these specialties. (From footnote 82 in Section A.3 of Appendix A to [20].) 
76 For example, the software engineer checks the correctness of understanding and elicits additional 
information in order to make the requirements explicit and unambiguous. 
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2.5.2.1 Contributory hazards in software requirements 
The contributory hazards identified in Table 9 also apply to software requirements. Table 11 
provides examples of additional hazards contributed through inadequacies in software 
requirements. 

Table 11: Examples of contributions to hazards through inadequate software requirements 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwR- Description 

ID 
H-SwR- Description 

1 Inadequate flowdown of properties 
(Table 8) and other constraints 
from the system engineering 
lifecycle (Table 9). 
[H-SwR-2↓] 

1G1 Corresponding constraints (Table 8 and 
Table 9) are derived and applied to 
software. 

2 Inadequate flowdown of 
requirements and constraints to 
support integration of elements into 
a correctly working system. 

2G1 Corresponding constraints (Table 8 and 
Table 9) are derived and applied to 
software. 

3 Inadequate flowdown of 
requirements and constraints from 
NPP level to the safety system and 
then to its elements, including 
software. 

3G1 Where requirements and constraints are 
decomposed or derived from upstream 
(source) requirements, their composition 
satisfies the source requirements  and does 
not introduce unspecified behavior. 

4 Software produces an output of 
infeasible value. 

4G1 Appropriate conditions infeasible in the real 
world are identified and used to establish 
criteria to monitor77 for anomalous behavior 
of software (adapted from CP 2.3.3.1.5 
in [12]), but do not introduce the adverse 
conditions identified in H-SR-{19 and 20}. 

2.5.2.2 Contributory hazards from software-requirements engineering 
The contributions to hazards identified in Table 10 (and conditions to reduce the associated 
hazard space) also apply to software-requirements engineering. Table 12 provides examples of 
additional contribution to hazards through inadequacies in engineering of software 
requirements. 

Table 12: Examples of contributions to hazards through inadequate software-requirements 
engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwRE- Description 

ID 
H-SwRE- Description 

1 Loss of information across disciplines, 
processes, and organizational units 
(e.g., system engineering, software 
engineering, hardware engineering, 
safety, and quality) caused by the 
division of organizations, people, and 
work along disciplinary lines. 
[H-culture-9↑] 

1G H-SRE-{7G1 and 7G1.1}↑. 
Also see H-culture-{9G1, 9G2, 12G2, 
and 12G3} and Appendix F. 

                                                 
77 It is a diversely redundant defense against deficiency in requirements to prevent the anomaly. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwRE- Description 

ID 
H-SwRE- Description 

2 Loss of information across disciplines 
caused by the use of incompatible 
paradigms, methods, and tools across 
disciplines. 
[Example contributor: H-HwP-5↓] 

2G Methods and languages to describe 
or specify requirements allocated to 
software support unambiguous 
mapping and integration across 
dissimilar elements (e.g., interactions 
across hardware, software, and 
human elements). 
[H-SAE-{2G1 and 3G1}↑] 
[H-HwP-5G1↓] 
See Appendix F.4. 

2.6 Evaluation of hazard analysis—Architecture 
System failures traceable to architecture rank high in incidence in various safety-critical, 
mission-critical, high-quality digital systems across a diverse range of application domains. For 
example, unwanted and unnecessary interactions, hidden couplings, feedback paths, and side 
effects have led to unexpected failures; verification based on traditional testing or simulation did 
not detect such flaws [20]. 

2.6.1 Contributory hazards in system architecture 
While the overall scope of system architecture includes the safety system under evaluation and 
its relationship with its environment, this section focuses on system-internal elements 
(e.g., hardware and software) and their interrelationships (i.e., interfaces, interconnections, and 
interactions), whether these are direct or indirect, intended or unintended, explicit or implicit, 
static or dynamic, or “normal” or “abnormal.” 

The scope of system-architecture activities includes the allocation of requirements and 
constraints to elements identified in the system architecture. 

Note: Architecture-specific evaluation of HA is predicated on the correct and complete 
performance of the overall HA, as illustrated in Table 1, including considerations of 
combinations of multiple contributory hazards as exemplified in Table 3 through Table 7. 

Table 8 and Table 13 include examples of contributors to hazards through system architecture 
and corresponding conditions that reduce the respective hazard spaces. These considerations 
are applicable to architecture-related contributory hazards in every phase in the development 
lifecycle (from conception to implementation), to every level in the integration hierarchy, and to 
transformations from one level to another. Thus, the information in these tables should be 
applied to the context of the level of integration being analyzed. 

Table 13: Examples of contributions to hazards through interference 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SA- Description 

ID 
H-SA- Description 

3 A system, device, or other 
element (external or 
internal to a safety system) 
might affect a safety 

3G1 [H-SR-17G1↑] 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SA- Description 

ID 
H-SA- Description 

function adversely through 
unintended interactions 
caused by some 
combination of 
deficiencies, disorders, 
malfunctions, or 
oversights. [H-SR-17↑] 

3G2 Interactions and interconnections that preclude 
complete78 V&V are avoided, eliminated, or 
prevented. (CP 2.2.3.11 in [12]) 

3G3 Freedom from interference is assured provably79 
across: 
1. Lines of defense [26]. 
2. Redundant divisions of system (CP 2.2.3.6 in [12]). 
3. Degrees of safety qualification80 (CP 2.2.3.3 

in [12]). 
4. Monitoring & monitored elements of the system. 

3G4 Analysis of the system demonstrates that unintended 
behavior is not possible.81 
1. Interaction across different sources of uncertainty is 

avoided. 
2. The architecture precludes unwanted interactions 

and unwanted or unknown hidden couplings or 
dependencies (in item 6 in Section A.4 of 
Appendix A to [20]).  

3. Specified information exchanges or 
communications occur in safe ways (in item 6 in 
Section A.4 of Appendix A to [20]). 

3G5 Only well-behaved interactions are allowed 
[H-S-1.2G{1, 2, and 3} and H-S-1.3G{1 and 2}↑] 

3G6 Constraints are identified for such contributing 
hazards from the environment as electromagnetic 
interference; see examples in Section E.4. of 
Appendix E. 

3G7 The impact of dependency-affecting change is 
analyzed to demonstrate no adverse effect.  

4 [H-SA-3G4↑]: A function, 
whose execution is 
required at a particular 
time, cannot be performed 
as required because of 
interference through 
sharing of some resource 
it needs. 

4G1 Analysis of the execution-behavior of the system 
proves that such interference will not occur. For 
example, worst-case execution time is guaranteed. 

5 Timing constraints are not 
correctly specified and not 
correctly allocated. 

5G1 Timing requirements for monitoring a continuously 
varying phenomenon are derived, specified, and 
allocated correctly to the services and elements on 
which their satisfaction depends. Example: 
A sampling interval that characterizes the monitored 
variable with fidelity. 

                                                 
78 “Completeness” includes confirmation that all specified requirements have been satisfied and 
confirmation that the requirements are correct, complete, consistent, and unambiguous. 
79 By, for example, showing that there is no pathway by which such interference could occur. 
80 In other application domains, the corresponding concept is known as “mixed criticality.” 
81 By, for example, showing that there is no pathway by which such unintended behavior could occur. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SA- Description 

ID 
H-SA- Description 
5G1.1 The proper required sampling interval is determined 

through mathematical analysis. 
5G1.2 Discretization and digitization do not affect the 

required fidelity determined through mathematical 
analysis. 

5G1.3 Aliasing is avoided. 
5G1.4 Sampling periods to monitor discrete events are 

determined correctly through mathematical analysis. 
6 Sampling and update 

intervals are not 
appropriate for the timing 
constraints of the 
associated control actions. 
[H-SR-15] 

6G1 Update intervals support the timing constraints of the 
required control actions determined through 
mathematical analysis. 
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2.6.2 Contributory hazards from system architectural engineering 
Applying the reference model depicted in Figure 4 to the activities of architectural engineering, 
Table 14 identifies hazards contributed through some of the resources and elements employed 
in these activities and commensurate constraints on these process activities. Additionally, as 
stated in Section 2.7, considerations therein “are applicable to architecture-related contributions 
to hazards in every phase in the development lifecycle (from conception to implementation), to 
every level in the (system, subsystem, component, sub-component …) integration hierarchy, 
and to transformations from one level to another.” 

Table 14: Examples of contributions to hazards through inadequate system architectural 
engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SAE- Description 

ID 
H-SAE- Description 

1 The architecture82 description 
(including requirements allocated to 
its elements) is ambiguous, rendering 
it vulnerable to interpretations other 
than those intended. For example, 
textual descriptions use words and 
expressions (and graphic 
representations use symbols) for 
which commonly understood 
meanings have not been agreed on 
by the community using this 
information. 
[H-S-2G6↑] 
[H-SAE-2↓ and H-SAE-3↓] 

1G1 The description method supports distinct, 
unambiguous description of the following: 
1. Assumptions about the environment. 
2. Input from the environment such as a 

command (some signal requiring 
state-changing effect plus required 
behavior), query, or data. 

3. Output (that is, some signal having 
state-changing effect) or state 
notification, including exception 
notification. 

4. Functions assigned to a human. 
4.1. Procedure for the execution of 

each function assigned to a 
human (required behavior). 

5. Other elements of the system. 
5.1. Functions assigned to each 

element; required behavior. 
6. Interrelationships of elements. 
7. Interactions required across elements. 
8. Constraints on the behavior and 

interactions of each element; 
e.g., timing constraints (Appendix I) and 
QoS constraints. 

9. Criteria to monitor and detect violation 
of a constraint. 

                                                 
82 The term is used in its comprehensive sense; e.g., it includes conceptual architecture (or requirements 
architecture), system design architecture, software design architecture, hardware design architecture, 
software implementation architecture, and function/procedure architecture. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SAE- Description 

ID 
H-SAE- Description 
1G2 The language (graphic or text-based) used 

in the description or specification is 
unambiguous; for example, it has: 
1. A closed set of language elements. 
2. Unambiguous semantics for each 

language element. 
3. Unambiguous semantics for the 

compositions (e.g., rules of composition) 
of language elements and their 
compositions. 

1G3 The method and language are applied 
correctly. 

2 Transformation or elaboration of 
architecture from one lifecycle phase 
to another does not preserve 
semantics and leads to unintended 
behavior. 

2G1 Methods and languages to describe, 
represent, or specify architectures 
(including requirements allocated to 
various elements) support unambiguous 
transformations or mappings across 
architectural artifacts (e.g., transformation 
from 
(a) system conceptual or requirements 
level to 
(b) system design level to 
(c) software design level to 
(d) software implementation level to 
(e) procedure or subroutine or function 
level). 

2G2 Information is used with semantic 
consistency across different elements of 
the system. 

3 When dissimilar elements are 
integrated (have to work together), 
their interaction results in unintended 
behavior caused by semantic 
mismatch (e.g., a signal from a 
sender does not have the same 
meaning for the receiver). 

3G1 Methods and languages to describe, 
represent, or specify architectures 
(including requirements allocated to 
various elements) support unambiguous 
mapping and integration (including 
composability and compositionality for 
essential properties) across dissimilar 
elements (e.g., interactions across 
hardware and software elements). 

3G2 Information is used with semantic 
consistency across different elements of 
the system. 

4 When elements from different sources 
or suppliers are integrated (have to 
work together), their interaction 
results in unintended behavior caused 
by semantic mismatch (e.g., a signal 
from a sender does not have the 
same meaning for the receiver). 

4G1 Methods and languages to describe, 
represent, or specify architectures support 
unambiguous transformations or mappings 
and integration (including composability 
and compositionality for essential 
properties) across elements from different 
sources or suppliers. 

5 A tool used in architectural 
engineering is not qualified to 

5G1 Each tool is qualified for use in developing 
a safety system. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SAE- Description 

ID 
H-SAE- Description 

produce, manipulate, or handle an 
architectural artifact (e.g., system, 
element, and data) supporting a 
safety function. 

5G2 Restrictions necessary for safe use of a 
tool are identified and the set of restrictions 
are tracked as a configuration-controlled 
item. 

6 Tools used in engineering a system, 
engineering software, or engineering 
hardware do not integrate correctly; 
that is, semantics might not be 
preserved in information exchanged 
across the tools. 

6G1 Tools intended to be used collectively or in 
an integrated process are configured and 
qualified for use in developing a safety 
system, as a set that is tracked as a 
configuration-controlled item. 

6G2 Restrictions on individual tools, their 
information-exchange functions, and their 
interactions (all of which are needed for 
safe use of the tools as a set) are identified 
and the set of restrictions is tracked as a 
configuration-controlled item. 

6G3 Semantics of the information accepted and 
provided by the tools are explicitly 
represented. 

7 A reused element (e.g., from some 
previous project or system, previously 
verified to satisfy its specifications), 
when integrated in this system, does 
not provide the intended system 
behavior (perhaps because semantics 
are not preserved in the flowdown of 
specifications or their realization). 

7G1 Each pre-existing element is qualified for 
the environment83 in which it is to be 
reused. 

7G1.1 Allocation of requirement specifications 
from system to the element is validated to 
be correct. 

7G1.2 Pre-existing specification of the element 
satisfies the requirement specification 
allocated from this system. 

7G1.3 The element satisfies the allocated 
requirements specification. 

7G2 Restrictions on the use of a pre-existing 
element in the target environment are 
identified and the set of restrictions are 
tracked as a configuration-controlled item. 

7.1 Some assumption about the reused 
element or its usage environment is 
violated. Also see H-SR-13. 
[H-culture-12] 

7.1G1 H-ProcState-4G1.2, H-culture-12G1, and 
H-SR-13G3 

8 Individuals performing architectural 
engineering functions might not be 
cognizant of the usage limitations of 
the tools, elements, and artifacts 
accessible to them. 

8G1 Human resources employed in 
architectural engineering are qualified to 
perform their roles, and know the usage 
limitations of the tools, elements, and 
artifacts available to them; the limitations, 
for example, might be incomplete V&V, 
known defects and deficiencies, limited 
conditions of use, and unvalidated 
assumptions. 

                                                 
83 Including assumptions about the environment—also see H-culture-12. 
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2.6.3 Contributory hazards in software architecture 
The information in Section 2.6.1, Table 8, and Table 13 also applies84 to software architecture, 
especially to relationships of software with its environment (e.g., hardware elements and human 
elements). This section focuses on software elements that are internal to the safety system and 
their interrelationships (i.e., interfaces, interconnections, and interactions), whether these are 
direct or indirect, intended or unintended, explicit or implicit, static or dynamic, “normal” or 
“abnormal.”85 

The scope of software architecture activities includes the allocation of requirements and 
constraints to elements identified in the software architecture. 

Note: The contents of this section are predicated on correct performance of HA, as 
discussed in preceding sections, and complete satisfaction of the criteria to prevent, avoid, 
eliminate, contain, or mitigate the categories of hazards identified in those sections. 

These considerations are applicable to architecture-related contributory hazards in every phase 
in the software development lifecycle (from conception to implementation), to every level in the 
software integration hierarchy86, and to transformations from one development phase or level to 
another. 

Table 15: Examples of contributions to hazards through software architecture 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwA- Description 

ID 
H-SwA- Description 

1 Software contributes to or 
exacerbates the 
complexity of the system, 
making it difficult to verify 
[H-S-1.1↑] and 
understand [H-S-2↑]. 

1G1 The behavior of a non-atomic87 element is a 
composition of the behaviors of its constituent 
elements, with well-defined and unambiguous rules 
of composition.88 (In item 5 in Section A.4 of 
Appendix A to [20].) 
1. Interfaces of elements include specification of their 

behavior, and are unambiguously specified 
(adapted from CP 2.3.3.2.2 in [12]). 

2. Interactions across elements occur only through 
their specified interfaces; that is, the interactions 
adhere to principles of encapsulation (adapted 
from CP 2.3.3.2.2 in [12]). 

1G2 The system is modularized using principles of 
information hiding and separation of concerns, 
avoiding unnecessary interdependence (in item 7 in 
Section A.4 of Appendix A to [20]). 

1G2.1 Corresponding specifications are modularized. 
1G2.2 Corresponding specifications, plans, and procedures 

for verification are modularized. 

                                                 
84 Replace “system” with “software” or consider the scope of the system to be narrowed down to software. 
85 Examples might be invalid input, a hardware malfunction, or a human mistake. 
86 Examples might be the subsystem, module, and subroutine levels. 
87 Non-atomic means that the architecture identifies its subdivisions - it is not the finest-grained element 
defined in the architecture. 
88 Including conditions for composability and compositionality for required properties. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwA- Description 

ID 
H-SwA- Description 
1G3 Each element (e.g., a software unit) is internally 

well-architected, satisfying conditions identified in 
Table 13, H-SwA-1G1, and H-SwA-1G2, in such a 
way that its quality requirements (Section 2.5.1.1) 
can be assured. For example: 
1. A software unit implementing some NPP safety 

function(s) is composed from semantically 
unambiguous atomic functions and data using 
well-defined and unambiguous rules of 
composition. [H-SwA-1G1↑] 

2. Paths from inputs to outputs avoid unnecessary 
coupling. [H-SwA-1G2↑] 

3. Unnecessary remembering of state information 
across execution cycles is avoided. (Adapted from 
CP 2.3.3.2.8 in [12].) 

2 Order of execution or 
timing behavior is not 
analyzable correctly 
because of system 
complexity 

2G1 Complexity-increasing behaviors are avoided 
[H-S-1.1.1G1↑] while simplicity-increasing features 
are preferred; for example: 
1. Static configuration of tasks89 to be executed in the 

operating software (adapted from the second and 
third bullets of CP 2.4.3.8.1 in [12]). 

2. Tasks in execution are run to completion90 
(adapted from the first bullet of CP 2.4.3.8.1 
in [12]). 

3. Static allocation of resources91 [H-SA-4G1↑] 
(generalized from bullets 2 through 4 of 
CP 2.4.3.8.1 in [12]). 

3 Behavior is not 
analyzable 
mathematically or 
analysis is not 
mechanizable for lack of 
a semantically adequate 
paradigm or model 
underlying the behavior 
specification or 
description. [H-SAE-{1, 2, 
and 3}] 

3G1 Behavior specification or description method is based 
on a semantically adequate, unambiguous paradigm 
[H-SAE-1G1↑ and H-SAE-1G2↑] supporting 
association of timing constraints [H-SR-13G4↑], other 
properties (Table 8↑), hierarchical nesting, and 
abstraction [H-S-1.1G1↑]. An example paradigm is 
that of an (extended) finite-state machine (adapted 
from [27] and from CP 2.3.4.1.1 in [12]). 

                                                 
89 In this context, a task is a schedulable unit of work. Dynamic creation and destruction of tasks is 
avoided. 
90 For example, interruption and preemption are avoided or mathematical analysis (See Appendix I) 
proves the satisfaction of constraints on timing and order of execution. 
91 Resources such as memory (information storage) and processor (execution) time. 
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2.6.4 Contributory hazards in software architectural engineering 
Table 14 is also applicable to the architectural engineering of software, with software-related 
refinements added in Table 16. 

Table 16: Examples of contributions to hazards through inadequate software architectural 
engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwAE- Description 

ID 
H-SwAE- Description 

1 Loss of information across disciplines 
(e.g., system engineering, software 
engineering, and hardware engineering) 
caused by the division of organizations, 
people, and work along disciplinary lines 
[H-culture-9↑]. 

1G Software is engineered with the 
requisite complement of 
competence – see H-SRE-1G1 
H-SRE-7G1↑ 

2 Loss of information across disciplines 
caused by the use of incompatible 
paradigms, methods, and tools across 
disciplines. 

2G H-SAE-{2G1 and 3G1}↑ 

2.7 Evaluation of Hardware-Related Hazard Analysis 
As in the preceding sections, hardware-related HA is treated in two parts—the product 
(Table 17: Examples of contribution to hazards) and the process (Table 18: Examples of 
contributions to hazards through inadequate hardware engineering). 

Table 17: Examples of contribution to hazards through hardware 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-Hw- Description 

ID 
H-Hw- Description 

1 Failure of 
hardware leads to 
unanalyzed 
conditions 
[H-S-1.1.1↑] 
(e.g., an unknown 
state). 

1G1 Only hardware with predictable, well-known, and 
well-understood degradation behavior is used. 

1G2 Degradation is detectable before failure that could lead to 
unanalyzed conditions (e.g., an unknown state) [H-S-1.2G3↑]. 
(Adapted from the first clause of CP 2.2.3.7 in [12].) 

1G3 Safety requirements are specified to keep the system in a 
safe, known state at all times, in all modes of usage, including 
maintenance, and including degraded conditions. Safety 
functions may be online or offline; for example: 
1. Monitor hardware conditions [H-SR-4G1↑] through: 

1.1. Cyclic or periodic online monitoring or 
1.2. Offline surveillance. 

2. Detect hardware faults [H-SR-4G2↑]—see H-Hw-1G4. 
3. Notify (other automation or a human) of the detection. 

[H-SR-4G5↑] 
4. Intervene (to keep the system in a safe state). 

[H-SR-4G3↑] 
5. Perform preventive maintenance such as scheduled 

replacements. 
6. Provide redundancy, including diverse redundancy. 
(Items 1 through 4 are adapted from CP 2.2.3.7 in [12]) 



 

RIL-1101 Page 55 
 

Contributory hazards Conditions that reduce the hazard space 
ID 
H-Hw- Description 

ID 
H-Hw- Description 
1G4 Requirements are identified for independent, timely detection 

of a contributory hazard in an instrument or other element on 
which a safety function depends. For example: 

1. In the case of a bi-stable device, the device can be 
feasibly be only in one stable state or the other, so an 
indication of both states at the same time is an anomaly. 

2. In the case of a continuously controlled electric motor for a 
motor-operated valve, if the trajectory of the variables, 
electric current, displacement, and time for the transition 
from actuation command to completion is outside the 
envelope of feasibility, it indicates an anomaly. 

3. The trajectory of feasible process-state variables (that is, 
their set of values over time) is identified, so that indication 
of an instrument anomaly can be derived from sensed 
values in the infeasible region. 

2 An anomaly in the 
state of the 
process is not 
recognized, 
identified, or 
correctly 
understood 
because of 
inadequacy in 
instrumentation. 
[H-SR-23↑] 

2G1 Progressive degradation, drift, and such other changes in the 
behavior of instrumentation are properly accounted for. Ways 
in which this is done might include: 
1. Monitoring and tracking of such phenomena. 
2. Compensation. 
3. Calibration and recalibration. 
4. Allowances (margins) for changes that are not accounted 

for, are not compensated for, or are unknown. 
5. Detection of unacceptable deviation. 
6. Appropriate intervention—see items 2 and 4 in H-Hw-1G3. 

3 An anomaly in the 
state of the 
instrumentation for 
the safety 
functions (or in the 
state of another 
element in the 
environment on 
which a safety 
function depends) 
is not correctly 
understood or 
recognized. 

3G1 The instrument’s or element’s behavior (including its behavior 
in fault states) satisfies requisite properties such as those 
identified in Table 8. 

4 Loss or 
interruption of 
power. 

4G1 See H-Hw-1G3. 
Continuity of power is monitored. 

5 Disturbance in 
power supply. 

5G1 See H-Hw-1G3. 
Quality of power is monitored. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-Hw- Description 

ID 
H-Hw- Description 

6 Inadvertent 
alteration of 
invariant 
information 
(e.g., program 
code or fixed 
data). 

6G1 Invariant information is stored in read-only memory (ROM). 
(Adapted from CP 2.7.3.3.2 in [12]).  

7 Change in 
hardware that is 
nominally 
“equivalent” to 
replaced hardware 
(e.g., is supposed 
to be functionally, 
electrically, or 
mechanically 
interchangeable) 
causes some 
subtle change that 
degrades a safety 
function. 

7G1 Criteria for equivalence are correct and complete. Examples of 
sources of differences might be: 
1. Differences in timing behavior. 
2. Differences in signal-noise discrimination. Also see Table 1. 
3. Differences caused by replacing fixed logic with 

programmable logic. 
7G2 The criteria mentioned in H-Hw-7G1 are satisfied. 

Table 18: Examples of contributions to hazards through inadequate hardware engineering 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-HwP- Description 

ID 
H-HwP- Description 

1 Loss of information across disciplines 
(e.g., system engineering, software 
engineering, and hardware engineering) 
caused by division of organizations, 
people, and work along disciplinary lines 
[H-culture-9↑]. 

1G1 H-SRE-1G1↑ 
See H-culture-{4G1, 4G2, 4G3, and 
4G4} and Appendix F. 

2 Loss of information across disciplines 
caused by incompatible paradigms, 
methods, and tools across disciplines. 

2G1 H-SAE-{2G1, 3G1}↑ 

3 Preventative maintenance activities on 
which a safety function depends are not 
performed correctly or in time [28] 
[H-Hw-1G3]. 

3G1 Maintenance schedules specify the 
preventative actions explicitly and 
correctly [H-Hw-1G3↑]. 

3G2 These maintenance schedules are 
treated as safety-related activities 
(including those for performance, 
verification, and audit) [Table 1]. 

4 Preventative protection against 
age-related degradation is not provided 
in maintenance plans (generalization 
from [29]).  

4G [See H-Hw-{1G1 and 1G2}.] 

5 Computation is incorrect because of a 
hardware-software incompatibility 

5G1 All interdependent elements are 
specified and configured correctly. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-HwP- Description 

ID 
H-HwP- Description 

caused by change in any of the 
following: 
1. Hardware (e.g., floating-point 

processor). 
2. Operating system (OS) 
3. OS library software. 
4. Compiler 
5. Compiler library software. 
6. Algorithm (e.g., formula and data 

types). 
7. Application library software. 

 [H-SwRE-2↑] 

5G2 The hardware, software, and 
transformation are qualified and 
configured correctly for conformance 
to the specification mentioned in 
H-HwP-5G1. 
(Generalized from CP 2.4.3.5.8 
in [12]). 

6 Selection of output destination 
(e.g., actuator) or input source 
(e.g., sensor) is incorrect (for example, 
because of incorrect mapping from 
software to hardware). 

6G1 I/O-identifying mappings from 
requirements to architecture to 
detailed design to implementation are 
verified to be correct. (Generalized 
from first sentence of CP 2.3.3.1.7 
in [12]). 

2.8 Evaluation of Hazard Analysis related to Software Detailed Design 
Review of HA under 10 CFR Part 52, “Licenses, Certifications, and Approvals for Nuclear Power 
Plants,” is limited to review of work products from the pre-certification phases of the lifecycle 
(e.g., the plan, concept, requirements, and architecture). However, these work products could 
also include other constraints remaining after design certification for preventing contribution to 
hazards from activities in the later phases. If that’s the case, these constraints could be 
identified as part of the licensing basis and could become part of ITAAC commitments. 

Many defects found during software detailed design are traceable to (rooted in) deficiencies 
from earlier phases in the development lifecycle. Earlier sections of this RIL have identified 
examples of those deficiencies as contributory hazards. Those conditions to reduce the 
respective hazard spaces also apply to software detailed design. 

Table 19: Examples of contributions to hazards through inadequate software detailed design  
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwD- Description 

ID 
H-SwD- Description 

1 Loss of information across disciplines 
(e.g., software architecture engineering and 
detailed software design). [H-SwAE-1↑] 

G1 H-SAE-{2G1 and 3G1}↑ 

2 Software contributes to or exacerbates the 
complexity of the system, making it difficult to 
verify [H-S-1.1↑] and understand [H-S-2↑]. 
[H-SwA-1↑] 

G2 See  
H-S-1.1G1 
H-S-1.1.1G1 
H-S-1.1.2G1 
H-S-2G1 
H-S-2G3 

3 Functions, data items, inputs, outputs, and 
variables in software are named in such ways 
that the names become difficult to trace back 
to system requirements (and further back to 

G3.1 Naming conventions and data 
dictionaries are established for 
ease of comprehension and 
bidirectional traceability. 
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Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwD- Description 

ID 
H-SwD- Description 

the application domain). 
(Adapted from CP 2.3.4.1.2 in [12]). 

G3.2 Naming conventions and data 
dictionaries are used 
consistently. 

2.9 Evaluation of Hazard Analysis Related to Software Implementation 
Many defects found during software implementation (coding) are traceable to (rooted in) 
deficiencies from earlier phases in the development lifecycle. Earlier sections of this RIL have 
identified examples of those deficiencies as contributory hazards. The conditions to reduce the 
respective hazard spaces affect software implementation also. 

Common Vulnerabilities and Exposures (CVE) [30] and Common Weakness Enumeration 
(CWE) [31] are forms of contributory hazards in computer programs. Safe programming 
languages or safe subsets of appropriately selected programming languages reduce these 
hazard spaces effectively. 

Table 20: Examples of contributions to hazards through software implementation 
Contributory hazards Conditions that reduce the hazard space 
ID 
H-SwI- Description 

ID 
H-SwI- Description 

1 Behavior is not analyzable 
mathematically or analysis is not 
mechanizable because of the 
complexity introduced through 
the improper use of interrupts or 
other mechanisms affecting 
order of execution. 

1G1 Unnecessary use of interrupts is avoided, for 
example, by not using interrupts to cover for 
inadequately understanding timing behavior of 
the physical phenomena (Table 1 and 
H-SR-3G7) or the design and implementation 
(H-SR-13G4 and H-SR-15G1) 

1G2 Schedulability analysis or proof is provided to 
verify that timing behavior of the implementation 
satisfies the specifications (H-SR-15G1). 

2 Timing problems prevent 
deterministic behavior. 
Timing problems are difficult to 
diagnose and resolve. 

2G1 The results produced by the programmed logic 
do not depend on either the time taken to 
execute the program or the time (referring to an 
independent “clock”) at which execution of the 
program is initiated. 
(Adapted from [32].) 

2G2 Execution speed does not affect correct order of 
execution. 

3 DISCUSSION OF REGULATORY SIGNIFICANCE  
Hazard analysis of a digital safety system92 could address clause 4.8 in IEEE 
Standard 603-1991 [1], which is incorporated by reference in 10 CFR 50.55a(h)(3). In clause 4.8 
in IEEE Standard 603-1991 (quoted below), a “condition having the potential for functional 
degradation of safety system performance” is a hazard and a “provision … incorporated to 
retain the capability for performing the safety functions” is a requirement or constraint to 
eliminate, prevent, or otherwise control the hazard. 

                                                 
92 A system to which a safety function has been allocated as a result of a plant-level safety analysis, 
which includes a plant-level hazard analysis. 
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4: A specific basis shall be established for the design of each safety system of the 
nuclear power generating station. The design basis shall also be available as needed to 
facilitate the determination of the adequacy of the safety system, including design 
changes. The design basis shall document as a minimum …: 

4.8. The conditions having the potential for functional degradation of safety system 
performance and for which provisions shall be incorporated to retain the capability for 
performing the safety functions … 

Hazard analysis of a digital safety system could support the “analysis…of the major structures, 
systems, and components…” required in accordance with 10 CFR 50.34(a)(3) as follows: HA 
could support the development of principal design criteria and derivation of design bases from 
these criteria [3] and corresponding clause 10 CFR 52.47(a)(2) of [4], “… analysis of the 
structures, systems, and components (SSCs) of the facility, with emphasis on performance 
requirements, the bases, with technical justification therefor, on which these requirements have 
been established, and the evaluations required to show that safety functions will be 
accomplished…. The description shall be sufficient to permit understanding of the system 
designs and their relationship to the safety evaluations.” Hazard analysis of a digital safety 
system could be part of the “analysis…of the major structures, systems, and components…”. 
Hazard analysis of a digital safety system identifies design characteristics, unusual or novel 
design features, and associated principal safety considerations. In this way the hazard analysis 
of a digital safety system could support requirements of clause 5.6 in [1], which depends on 
clause 4.8, by yielding principal design criteria, design bases, and derived requirements and 
constraints relating to independence with the specificity needed for consistent verification and 
validation. 

It is recognized from recent licensing-review experiences that generally accepted engineering 
standards93 are not sufficiently specific to ensure consistent application, given the trends in 
design characteristics, and unusual or novel design features. These novelties require significant 
judgment that depends on a high level of subject-matter competence. In consideration of these 
trends and similar trends in other application domains and issues encountered in respective 
safety reviews, this RIL identifies the associated contributory hazards and corresponding 
system characteristics and conditions that reduce the respective hazard spaces. In turn, this 
could reduce the judgment space in regulatory evaluation and thus, regulatory uncertainty 
perceived by the applicant. 

Hazard analysis of a digital safety system could lead to development of principal design criteria, 
in addition94 to or overlapping the general design criteria in Appendix A to 10 CFR 50, which 
provide only minimum requirements. 

Hazard analysis of a digital safety system could lead from principal design criteria to design 
bases, including constraints on the architecture and on design and implementation, in such a 
way that the performance of the functions and the non-exceedance of the constraints are 
verifiable later in the system-development lifecycle. These derived requirements and constraints 
lead to the level of design information to which the following requirement in 10 CFR 52.47, 
“Contents of Applications; Technical Information,” refers: 

“The application must contain a level of design information sufficient to enable the 
Commission to judge the applicant's proposed means of assuring that construction 

                                                 
93 The term “generally accepted engineering standards”  is mentioned in 10 CFR 50.34(a)(ii)(B), and 
includes standards cited in the NRC’s regulatory guides. 
94 These additional requirements or constraints may be specific to a facility, system, component or 
structure. 
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conforms to the design and to reach a final conclusion on all safety questions 
associated with the design before the certification is granted. The information 
submitted for a design certification must include performance requirements and 
design information sufficiently detailed to permit the preparation of acceptance and 
inspection requirements by the NRC…” 

Hazard analysis of a digital safety system could be part of the preliminary analysis which yields 
principal design criteria, design bases, and derived requirements and constraints with the 
degree of specificity needed for consistent verification and validation. Hazard analysis naturally 
organizes this information along flowdown (or dependency) paths from a safety function, 
because it follows a cause-and-effect course of inquiry and reasoning, originating from potential 
for degradation of the safety function. This cause-and-effect course of inquiry and reasoning 
could also support developing specific information required in accordance with 
10 CFR 50.34(a)(5) through (8) and 10 CFR 52.47(a)(7) and (19), in those cases for which such 
information is critical to safety analysis. 

The technical basis and safety-goal-focused organizing framework established in RIL-1101 
contributes limited support for risk-informed treatment as follows. It contributes to the 
determination of safety significance through systematic identification of a hazard; i.e., potential 
for degradation of a safety function allocated to the system under evaluation. As this approach 
includes dependency analysis, it also supports identification of contributors to a hazard; for 
example, the potential for adverse effect on diversity or defense in depth. 
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4 CONCLUSIONS 
This RIL provides the U.S. Nuclear Regulatory Commission (NRC)’s licensing staff the technical 
basis to support their review of hazard analysis (HA) performed on a digital safety system by an 
applicant seeking a design certification, combined license, or a license amendment. 

The RIL has been focused on certain kinds of issues encountered in NRO’s recent licensing 
reviews, which are rooted in systemic causes. These issues arise from engineering deficiencies 
during the development of a digital safety system. These deficiencies are characterized as 
contributory hazards. Examples of engineering deficiencies include: 

1. Unintended or unwanted interactions are not prohibited. 
2. The boundary of the digital safety system being analyzed is not defined adequately. 
3. Constraints to control hazards from the top level of a digital safety system are decomposed 

and allocation incorrectly in the flow down the integration hierarchy; and 
4. Corresponding requirements and constraints on technical processes, supporting processes, 

and organizational processes are not derived correctly and completely. 

Although the targeted scope was limited, the result supports a broader purpose. Hazard 
analysis organizes information along cause-and-effect dependency paths (Table 1, items H-0-8 
and H-0-9, and Appendix K) from a safety function to a contributing item and provides a 
framework for reasoning about the (perceived) deficits (Section C.3.3 of Appendix C). In this 
manner, it contributes to risk-informed evaluation of the system. 

The cause-and-effect dependency network resulting from hazard analysis provides a 
safety-goal-focused organizing framework which an applicant could use to streamline its safety 
analysis report, justifying elimination of those provisions in NRC-cited standards which do not 
contribute to the safety goal. The applicant could also use this framework to justify alternative 
ways of satisfying the NRC’s regulation in cases in which the applicant’s approach is not aligned 
with the NRC’s current guidance or standard review plan but meets the safety goal. The 
applicant could also use this methodology to analyze a modification to an existing I&C safety 
system (e.g., replacement of an older-technology module with a newer digital technology 
module) and use the resulting requirements and constraints to drive the modification. 

Currently, different sets of regulatory guidance exist for power reactors, nonpower reactors, 
research and test reactors, and nuclear-material processing facilities. The organizing framework 
introduced in this RIL opens opportunities to harmonize and streamline95 the different sets of 
regulation, without increasing the burden of preparing an application or a safety analysis report 
for any particular type of system. 

This organizing framework leads the way to an improved safety-focused future regulatory 
framework, as discussed in the next section. 

This study found very little published information organized specifically to support HA reviews 
applicable to the targeted scope. Therefore, information assimilated in the RIL includes 
knowledge acquired through consultation with external experts. Through this process, RIL-1101 
presents a unique assimilation of the state of the art. This technical basis supersedes that given 
in [33]. 

                                                 
95 For example, in the concept of “item relied on for safety (IROFS)” used in nuclear-material processing 
equipment, the “relied on” relation maps into a dependency relation, explained in Appendix K of RIL-1101. 
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5 FUTURE RESEARCH, DEVELOPMENT, AND TRANSITION 
The development of this RIL, including knowledge acquired through reviews by experts, has 
revealed many opportunities to improve the effectiveness and efficiency of the regulatory review 
process for digital safety systems, as identified below for future consideration in accordance 
with the priorities of the licensing offices and the availability of resources. 

5.1 Transition, knowledge transfer, and knowledge management 
The trend towards systems with increasing interactions, fostered through networks and 
software, has rendered traditional hazard analysis techniques, such as FMEA and FTA, 
inadequate. Whereas other techniques (Appendix C.6), more suitable for this trend, have been 
known for some time, these are less familiar to the NPP industry, including the NRC’s licensing 
reviewers. There is a need to make this knowledge more easily deployable in practice, including 
illustrative examples. Consistent with recommendations in [34] about domain-specific software 
engineering, the knowledge can be made more accessible through techniques to represent the 
knowledge of the domain in a form that is easy to find and reuse correctly. 

In support of a recommendation by the ACRS I&C Subcommittee, the NRC intends to 
coordinate its plans with the Electric Power Research Institute (EPRI) in order to share the 
knowledge base that is common across various stakeholders’ activities: System development by 
the applicant or its supplier, hazard analysis by the applicant, and its evaluation by the 
regulatory reviewer. 

In support of a recommendation by the ACRS I&C Subcommittee, transition plans will include 
learning cycles (e.g., through pilot applications). 

5.2 Integration of safety-significant information from NPP-level analysis 
The trend towards systems with increasing interactions, fostered through networks and 
software, increases the difficulties of analyzing dependencies of a safety system on conditions 
in its environment. For example, the traditional individual FMEA of other I&C SSCs does not 
suffice. With the trend in growth in the volume of information, traditional manual methods will not 
be scalable. Information sharing and consistency maintenance will require mechanized support. 
Future R&D and transition plans will include investigation of more effective methods, such as 
tool-supported model-based hazard analysis. 

5.3 Harmonization and disambiguation of vocabulary 
Differences in vocabulary hamper the NRC’s ability to learn from NPP experience elsewhere in 
the world and from other application sectors. The same terms have different meanings. The 
same concepts have different terms. Different concepts are combined in different ways, 
introducing more terms for the combinations.  These combinations are not directly or easily 
comparable. These conditions lead to ambiguities and unnecessarily encumber the tasks of 
hazard analysis and evaluation. 

Technology is available to bridge these communication gaps (e.g., modeling knowledge of the 
domain, as mentioned in Section 5.1). The NRC will coordinate its plans with EPRI. 
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5.4 International harmonization 
Different regions of the world pursue the same or similar safety goals under different regulatory 
and guidance frameworks, citing different standards. These differences obstruct reaching a 
common understanding of the issues and establishing common or harmonized evaluation 
criteria. The NRC’s current guidance is closely tied to legacy standards, which are not able to 
keep up with the changing technological environment. The safety-goal-focused organizing 
framework introduced in this RIL opens an opportunity to remove this obstacle. Building on the 
vocabulary harmonization effort mentioned in Section 5.3, opportunities exist in exploring 
international harmonization of the technical basis for evaluating hazard analysis. 

5.5 Learning from other application domains and agencies 
Other regulated application domains, such as life-critical medical devices and mission-critical 
flight-control systems are experiencing the same trend towards systems with increasing 
interactions, fostered through networks and software. Larger markets than nuclear power are 
driving regulatory practices in those domains. Consistent with executive guidance, resources 
can be leveraged by coordinating future R&D with other federal agencies [35], including 
capability to systematize hazard analysis at the conceptual phase of the system-development 
lifecycle [36]. 

5.6 Analysis earlier in the system-development lifecycle 
In the case of new reactors, applications for design certification have included safety analysis of 
software that is based more on process conformance than rigorous V&V of the software itself. 
Appropriate architectural design and analysis requires abstractions that have not been a part of 
common practice in the NPP industry. However, architectural design and analysis is being used 
in other critical application domains. Future R&D and transition plans include introducing that 
knowledge in the NPP application domain, building on the R&D mentioned in Sections 5.1 
and 5.3 and enabling hazard analysis on an architectural model of the system. 

5.7 Risk-informed evaluation 
Opportuities  exist in applying hazard analysis (for example, modeling and analysis of 
dependencies on systemic causes) to risk-informed evaluation of systems in which 
safety-significant conditions can arise from unintended interactions, engineering deficiencies, or 
other systemic causes. 

5.8 Integrated hazard analysis for safety, security and other concerns 
The organizing framework introduced in this RIL opens an opportunity to extend the design 
review for safety to include hazards from breach in security in the digital realm, and to include 
hazards contributed through considerations of non-safety objectives driving a safety system’s 
configuration. 

5.9 Integrated organizing framework 
The organizing framework established through hazard analysis, as treated in this RIL, provides 
a logical framework to integrate the results of verification activities, as explained in Section 1.7.8 
(see Figure 1) and Appendix C.3.3 (see Figure 10). This basis feeds into a related ongoing 
research activity to understand how a better “safety demonstration framework” (e.g., an 
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assurance-case framework) could address issues experienced in regulatory reviews in different 
regions of the world. Through the Organisation of Economic Co-operation and Development’s 
(OECD’s)/Nuclear Energy Agency’s (NEA’s) Halden Reactor Project, the NRC is collaborating 
with other regulatory experts to identify common needs and a common technical basis to meet 
these needs. The intent is to shift the paradigm from clause-by-clause compliance with 
regulatory guidance to meeting the safety goal, building on the hazard analysis framework 
introduced in this RIL. It is envisioned that the same framework could be applied to any level of 
integration within a digital safety system (e.g., embedded digital devices). It is expected that this 
framework would also provide efficient support to evaluate modifications96 after a reactor 
becomes operational. 

5.10 Ideas received through review comments 
Suggestions and remaining issues identified in review comments are treated as inputs to the 
NRC’s next I&C research plan. For example, external expert review suggestions include: 

1. Additions for hazards contributed through tools. 
2. Extension of the content concerning detailed design and implementation. 
3. Additions for hazards contributed through implementations of field-programmable gate 

arrays (FPGAs) and complex programmable logic devices (CPLDs). 

 

                                                 
96 It could support evaluation for 10 CFR 50.59, “Changes, Tests, and Experiments.” 
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6 ABBREVIATIONS AND ACRONYMS 
ACRS Advisory Committee on Reactor Safeguards 

ADAMS Agencywide Documents Access and Management System 

CFR Code of Federal Regulations 

CP common position97 

CPLD complex programmable logic device 

DI&C digital instrumentation and control 

FPGA field-programmable gate array 

FMEA fault modes effects and analysis 

FTA fault-tree analysis 

EQ  environmental qualification 

HA hazard analysis 

HAZOP(S) hazard and operability studies 

HQEO high-quality engineering organization 

I&C instrumentation and control 

IT information technology 

ITAAC inspections, tests, analyses, and acceptance criteria 

NPP nuclear power plant 

NRC U.S. Nuclear Regulatory Commission 

NRO Office of New Reactors 

PHA preliminary hazard analysis 

QoS quality of service 

R&D research and development 

RAI request for additional information 

RES Office of Nuclear Regulatory Research 

RIL research information letter 

SAR safety analysis report 

SRP Standard Review Plan 

V&V verification and validation 

                                                 
97 A term used in [12] for a requirement on which the Task Force for Safety Critical Software has total 
consensus.  This task force consists of regulatory experts from the United Kingdom (UK), Germany, 
Sweden, Belgium, Finland, Spain, Canada, and Korea. 
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APPENDIX A: Glossary 
The scope of this glossary is limited to this document. 

Where a word is not defined explicitly in the glossary, it is understood in terms of common 
usage as defined in published dictionaries of the English language (e.g., [1][2][3]). 

The glossary focuses on terms that are not commonly understood in the same way, removing or 
reducing ambiguity by selecting and using more specific definitions. Where needed, notes 
elaborate the definition. 

Where possible, the definition of a technical term is traceable to an authoritative reference 
source. In cases in which the authorities have different, inconsistent definitions, the glossary 
adapts the definition and includes explanatory notes to reduce ambiguity. 

The meanings of compound words, terms, and expressions are derived from the meanings of 
their constituent words, as defined in this glossary. 

Aliasing 
In signal processing and related disciplines, aliasing [4] refers to an effect that causes different 
signals to become indistinguishable (or aliases of one another) when sampled. It also refers to 
the distortion that results when the signal reconstructed from samples is different from the 
original continuous signal.  
Notes: 
1. Aliasing is caused when frequencies higher than one half of the sampling rate are present (by the Nyquist 

Theorem, the maximum reproducible frequency is one-half the sampling rate). This results in the higher 
frequencies being “aliased” down to look like lower frequency components. (Adapted from definition 1 for 
“anti-aliasing” in [5]). 

2. Aliasing is prevented through lowpass filtering of the incoming signal to block out frequencies higher than those 
that can be accurately reproduced by the given sampling rate. This technique is called anti-aliasing. (Adapted 
from definition 1 for “anti-aliasing” in [5]). 

Accountability 
The quality or state of being accountable (responsible). 

Assumption 
A premise that is taken for granted, i.e., not validated. Often, It is taken for granted implicitly 
Notes: 
1. This definition is used in the context of reasoning as a part of safety analysis. 

2. Other forms: Assume. Assumed. Assuming. 

3. In the course of engineering, a premise may be validated. Then, it is not an assumption anymore. 

4. If the premise is not validated, engineering may progress by mapping the assumption explicitly into a 
limitation on the use of the system or a condition  of use or constraint on usage. Then, the constraint is 
treated as any other safety requirement (e.g., hazard analysis evaluates that satisfaction of the 
condition is verifiable. Verification activities verify that the condition is satisfied). 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Distortion
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Analysis 
A process of reasoning showing that a proposition can be deduced from premises (adapted 
from [6]). 
Notes: 
1. The process may entail decomposition. http://plato.stanford.edu/entries/analysis/s1.html#KD. 

2. See Kant’s discussion at http://plato.stanford.edu/entries/analysis/s1.html#Kant. 

3. Analysis may take various forms: 
3.1. Quantitative 

3.1.1. Numerical (e.g., analysis of a continuous control algorithm) 
3.1.2. Logical 
3.1.3. Other forms of mathematical analysis; i.e., where: 

3.1.3.1. The reasoning is composed with clear mathematical rules of composition. 
3.1.3.2. The reasoning is backed by science (e.g., cause-and-effect laws of engineering). 

3.2. Qualitative98, but consistently99 repeatable by comparably qualified performers. 

4. Performance of the analysis may entail various degrees of machine assistance: 
4.1. Complete mechanization 
4.2. Mechanization requiring manual intervention; e.g., human-guided machine processing. 
4.3. Completely manual, but consistently repeatable by comparably qualified performers. 

5. The term “formal” (along with its variations) is used to mean “mathematical” as in note 3.1.3. 

6. Derived forms: 
6.1. Analyzability 
6.2. Analyzable 
6.3. Unanalyzable 
6.4. Unanalyzed 

Architecture 

The structure or structures of the system, which comprise elements (e.g., software), the 
externally visible properties of those elements, and the relationships among them and with the 
environment (adapted from [7]), where: 

1. “Externally visible properties” of an element include behavior (both normal and abnormal) as 
seen from outside the boundary (interface) of an element. 

2. “Relationships” include interactions and interconnections (communication paths). 

Assure 
Confirm the certainty of the correctness of the claim, based on evidence and reasoning. 
Notes: 
1. For example, by proof; see note 3.1.3 in Analysis. 

2. Examples of claims: 
2.1. The system is safe. (Property: Safety. Value: “Is safe.”)  
2.2. Property X of the system holds. 

                                                 
98 See Quality. 
99 If the analysis is not consistently repeatable or the analysis method/tool itself is not qualified for safe 
use, the system is considered unanalyzable for the purposes of this RIL. 

http://plato.stanford.edu/entries/analysis/s1.html#KD
http://plato.stanford.edu/entries/analysis/s1.html#Kant
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3. Derived forms: 
3.1. Assurance: Certainty of something  (Entry 2.1 for Assurance in [1] 
3.2. Assurable 
3.3. Assurability 

Attribute (of quality) 
Inherent property or characteristic of a system or its element that can be distinguished quantitatively or 
qualitatively. (Adapted from 2.2 in [8].) 

Notes: 
1. The means of distinction may be manual or automated. 

2. Also see “Quality measure” and “Scale.” 

Byzantine behavior 
In a distributed system, arbitrary behavior in response to a failure [9]. 
Notes: 
1. Arbitrary behavior of an element that results in disruption of the intended system behavior. 

2. An element of a system may exhibit a type of behavior, in which it sends conflicting information to 
different receivers in the system. 

3. Different observers see different states, because the sender sent them different information. 

4. Different observers see different states, because they access changing information at different times 
(e.g. reading a clock while it is changing). 

5. Byzantine fault: a fault presenting different symptoms to different observers. 

6. Byzantine failure: the loss of a system service due to a Byzantine fault in systems that .require 
consensus. 

Claim 
A true-false statement about the value of a defined property of a system. (Adapted from [10].) 
Notes: 

1. A “property” is a quality attribute of the system. (Adapted from 4.3.9 and 4.4.1 in [11].) 
1.1. Example of a property: Safety. 

2. A property may have supporting sub-characteristics [11]. 
2.1. Example: Verifiability ← Analyzability ← “Freedom from interference”. 

3. Unlike physical quantities, a property’s sub-characteristic might not be measurable on an absolute scale [11]. 
3.1. Indicators may be associated with a sub-characteristic for its estimation or indirect measurement. 

4. A sub-characteristic may be specified in terms of conditions or constraints on its behavior [11]. 
4.1. Example sub-characteristic of the safety property: Restriction on allowed system states. 
4.2. Example sub-characteristic of “freedom from interference”: Constraints on flows or interactions. 

5. “Value” may be a single value, a set of single values, a range of values, a set of ranges of values, and limits on 
values. Value can be multi-dimensional [11]. 

6. “Value” may be invariant, may depend on time, or may depend on some other conditions [11]. 

7. A duration of applicability may be associated with a property (i.e., the property might not be limited to the 
present). For example, the property may concern the future behavior of the system [10]. 
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8. Uncertainty (lack of certainty) may be associated with the property [10]. 
8.1. The value of uncertainty might not necessarily depend on probability. 
8.2. Uncertainty may be associated with a sub-characteristic. 
8.3. Uncertainty may be associated with the duration of applicability. 
8.4. Uncertainty may be associated with other conditions of applicability. 
8.5. For example, evaluation of a claim may be based on certain conditions that are formulated in terms of 

assumptions that the identified uncertainties do not exist. 

Cognitive process 
The performance of some composite cognitive activity; an operation that affects mental 
contents. 

Collective mindfulness 
A characteristic of an organization of having the collective mindset necessary to detect and 
understand unanticipated conditions100 and to recover from them before they lead to harm. 

Note: Awareness is more than simply an issue of “the way in which scarce attention is allocated.” 
Mindfulness is as much about the quality of attention as it is about the conservation of attention. It is as 
much about what people do with what they notice as it is about the activity of noticing itself. Mindfulness 
involves interpretive work directed at weak signals, differentiation of received wisdom, and reframing, all of 
which can enlarge what is known about what was noticed. It is the enlarged set of possibilities that suggests 
unexpected deviation101 that needs to be corrected and new sources of ignorance that become new 
imperatives for noticing. 

Complexity 
The degree to which a system or component has a design or implementation that is difficult to 
understand and verify. (Definition (1)(A) in [5].) 
Notes: 
1. The selection102 of this definition was favored by Dr. Gerard Holzmann [12].  

2. The term “simplicity,” the converse of complexity, is often used to discuss the same issues. It is defined 
in [5] as follows: The degree to which a system or component has a design and implementation that is 
straightforward and easy to understand. 

3. A “complexity measure or indicator” is distinct from the concept of “complexity.” 

3.1. See definition (1)(B) in [5] for usage as complexity measure. 

3.2. Example of an indicator: The number of linearly independent paths (one plus the number of 
conditions) through the source code of a computer program is an indicator of control flow 
complexity, known as McCabe’s cyclomatic complexity [5]. 

3.3. Sometimes, the term “size-complexity” is used to refer to the effect of the number of states and 
number of inputs and their values and combinations. 

4. Complexity theory is concerned with the study of the intrinsic complexity of computational tasks; that is, 
a typical complexity-theoretic study considers the computational resources required to solve a 
computational task (or a class of such tasks). It studies what can be achieved within limited time (and/or 
other limited natural computational resources) [13]. For example, the time required to solve a problem—
calculated as function f(…) of the size of the instance, usually the size of the input n—is studied for its 
scalability (e.g., the computation time is bounded by “order of” O(…) with respect to the input size n). 
Similarly, instead of time, one could study the scalability with respect to some other resource constraint 
(e.g., space or memory). An example of a useful result from this theory is a premise that only those 

                                                 
100 In the context of RIL-1101, these are mapped into “(contributory) hazards.” 
101 In the context of RIL-1101, deviation is mapped into “(contributory) hazard.” 
102 Various standards provide different definitions; there is no broadly accepted definition. 
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problems that can be solved in polynomial time, denoted as O(nk) for some constant k, can be feasibly 
computed on some computational device [14]. Applying this thesis to evaluation of system architecture, 
one could conclude that, if the input space of a system is not bounded, the system is not verifiable. One 
could further conclude that, if the interactions across elements of the system are not bounded, the 
system is not verifiable. 

Complex logic 
An item of logic for which it is not practicable to ensure the correctness of all behaviors103 
through verification alone. 
Notes: 
1. This definition is derived from a combination of the definition of complexity given above and the 

following definition in DO-254/ED-80 in Appendix C [15] for “simple hardware item”: “A hardware item is 
considered simple if a comprehensive combination of deterministic tests and analyses can ensure 
correct functional performance under all foreseeable operating conditions with no anomalous behavior.” 
The conditional clause “if a comprehensive combination of deterministic tests and analyses…” is 
summarized as “verification.” 

2. Therefore, in addition to verification, the demonstration of correctness of complex logic requires a 
combination of evidence from various phases of the development life cycle to be integrated with 
reasoning to justify the completeness of coverage provided (summarized as development assurance). 
Examples include the following: 

2.1. Evaluation of the system concept (and conceptual architecture). 
2.2. Evaluation of the verification and validation plan. 
2.3. Criticality analysis. 
2.4. Evaluation of the architecture, including requirements allocation. 
2.5. Evaluation of the hazard analysis internal to the system. 
2.6. Validation of requirements and constraints on the design and implementation. 
2.7. Assessment and audit of all processes, including supporting and management processes. 
2.8. Certification104 of organizations developing software. 
2.9. Evaluation of the independence105 of the assurance activities. 
2.10. See [15] for more detail. 

3. Complex logic is typically produced by techniques such as software or hardware description languages 
and their related tools. Thus, the assurance of correctness also requires assurance of the languages 
and tools. 

Comprehensibility 
The extent to which the information is easy to understand and valid inferences can be 
drawn from it (adapted from definition of comprehensible in [1]). 

Constraint 
An externally imposed limitation on system requirements, design, or implementation or 
on the process used to develop or modify a system (Definition 6 in [16]). 

                                                 
103 This refers to behaviour under all foreseeable operating conditions. 
104  Certification of the development organization should be a continual process of certification and 

recertification much in the same manner as reactor operators are certified periodically. For example, 
the “capability maturity model” integrated certification process developed by the Software Engineering 
Institute focuses on assessing the capabilities of development. 

105  For example, independence can be evaluated through certification of the assurance process for the 
complex logic (e.g., software). 
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Examples: 
1. Pre-conditions and post-conditions. 
2. Limits on memory size, cost, deadlines to be met. 

Contribute 
Help to cause or bring about something (Definition 1.1 in [1]).  
Notes: 
1. Derived forms: 

1.1. Contribution: The thing contributed. 
1.2. Contributory: Of, relating to, or forming a contribution. 

2. Some experts use the term “cause.” Others sometimes interpret “cause” to mean “direct cause” or “primary 
cause” or “closely coupled cause.” However, many factors that influence the result may be distantly coupled 
through long chains of dependency relationships; the term “contribute” allows their inclusion. 

3. Definition of cause in [1]: Make something (typically something bad) happen (occur). 

Contributory hazard 

Factor contributing to potential for harm. 
Notes: 

1. (Excerpt from [17]:) “…. An unsafe act and / or unsafe condition which contributes to the accident106 ....”. 

2. Figures 7-1 through 7-4 in [18] illustrate contribution paths. 

3. Examples: 
3.1. The potential for adverse energy flow [17]. 
3.2. Inappropriate functions (from Figure 7-5 in [18]). 
3.3. Normal functions that are out of sequence (from Figure 7-5 in [18]). 
3.4. Functional damage and system degradation (from Section 7.1.1 in [18]). 
3.5. Machine-environment interactions resulting from change or deviation stresses as they occur in time and 

space (from Section 7.1.1 in [18]). 

Cultivate 
Develop (improve) a pattern of behavior. 

Data 
Value, symbol, image or other representation in a form which can be communicated across its 
users. 
Notes: 
1. Data is used as a singular noun, as well as, plural. 
2. The users may be people or machines. 
3. Data on its own has no meaning. Also see Information. 

Design Defect 
Frailty or shortcoming of an item resulting from a defect in its concept, and which can be 
avoided only through a redesign of the item. (Adapted from [19]) 
Notes: 
1. In RIL-1101, the term is used primarily in the context of the engineering phases of the product lifecycle. 

                                                 
106 Or, for the purpose of this document, to the degradation of a safety function. 



 

RIL-1101 Page 75 
 

2. Definition 2 in 3.764 [16] defines defect as follows, “An imperfection or deficiency in a project component which 
causes that component to fail to meet its requirements or specifications so that the component needs to be either 
repaired or replaced.” In this definition and other similar definitions of “defect”, the expression “… fail to meet its 
requirements or specifications” excludes cases in which the requirement or specification itself is deficient. 
However, most defects occur, because the requirements are deficient (e.g., incomplete, inconsistent, ambiguous, 
or even incorrect). According to these definitions, a system might not be defective, yet it might lead to a hazard. 

3. Referring to the definition for design defect, “a defect … which can be avoided only through a redesign of the 
item,” if the redesign is also an attempt to satisfy the same deficient requirements, then the associated 
(contributory) hazard might still be present. 

Demonstrate 
Prove (the assertion in context) through reasoning. 
Notes: 
1. The assertion may be a claim. 
2. The premise in the reasoning may be some evidence supporting the claim. 

Dependent 
Determined or conditioned by another. 
Notes: 
1. Other forms: 

1.1. Dependency: The quality or state of being dependent on or unduly subject to the influence of another. 
1.2. Dependence: Same meaning as dependency. 
1.3. Independent 

2. For example, if some factor or condition could cause the degradation of a safety function, then the safety function 
is dependent on it. Also see “Contributory.” A safety function could be dependent on a contributor in many ways 
(paths or channels or couplings) In addition to direct causal paths, a dependency could arise through a side 
effect such as interference across activities and resources. 

Deterministic 
(In the context of a process) such that the resulting behavior is entirely determined by the initial 
state and inputs to the process, and which is not random or stochastic.  
Notes: 
1. The terms “deterministic” and “predictable” are related as follows. 

2. Predictability: The degree to which a future state of the system can be determined, i.e., known, given the current 
state and for a given set of inputs. 
2.1. For a logic system, the “as built” system should behave exactly as predicted through the analysis that is 

used in its assurance. 
2.2. For a physical (e.g., electrical, hydraulic, or mechanical) system, the “as built” system should behave as 

predicted, within specified limits, which are used in the analysis for its assurance. Sometimes, these limits 
are known as error bounds. The behavior is considered deterministic, because the variations are attributed 
to causal factors which were not modeled with sufficient accuracy in the analysis. Example causes for loss 
of accuracy: Discretization of continuous phenomena, such as value of pressure and time of its 
measurement; inaccuracy of measuring instrument; coulomb energy losses; coulomb friction; variation in 
geometry of a physical object. 

Diverse team 
A team composed of individuals with complementary attributes needed to perform the assigned 
task (e.g., thought processes, communication styles, and competence, including education, 
training, and experience in different domains and disciplines). 
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(System) Element 
A discrete constituent of a system (adapted from [20]). 
Notes: 
1. The term “discrete constituent” is substituted for the word “component” used in the definition from [20] to avoid 

confusion with other meanings of “component” in the context of software. The word “discrete” implies that the 
constituent has a distinct boundary (that is, an interface with its environment in accordance with the definition 
in [21]) and an intrinsic, immutable, unique identity (adapted from [20]). 

2. In general, an element is a discrete part of a system that can be implemented to fulfill specified requirements.  

3. Examples: 
3.1. Hardware element. 
3.2. Software element. 
3.3. Human element. 
3.4. Data element. 
3.5. Data structure. 
3.6. Process (e.g., a process for providing service to users). 
3.7. Procedure (e.g., operating instructions). 
3.8. Facility. 
3.9. Material. 
3.10. Naturally occurring entity (e.g., water, an organism, or a mineral). 
3.11. Any combination of these things. 

4. An element may have other elements in it (e.g., a subsystem). 

5. A system may itself be an element of a larger system. 

Environment 
A general term relating to everything (including every condition) that supports or affects the 
performance of a system or a function of the system. (A combination of 9A and 9B in [5]). 
Notes: 
1. The environment of a software component consists of all the elements (in their respective states or conditions) 

with which it interacts, by which it is affected, and on which it depends. Examples of elements: 
1.1. Other software components 
1.2. Operating system (common services and resources shared by software components) 
1.3. Execution hardware 

2. The environment of an electronic hardware component consists of physical environmental conditions and other 
hardware components (in their respective states or conditions) with which it interacts, by which it is affected, and 
on which it depends. Examples of physical environmental conditions: 
2.1. Temperature 
2.2. Humidity 
2.3. Electromagnetic radiation 

3. The “environment” of a system includes the combination of systems and elements (e.g., hardware, software, and 
human) external to this system, human elements interacting directly with the system, and the corresponding 
manual procedures. 

Error 
The difference between a computed, observed, or measured value or condition and the true, 
specified, or theoretically correct value or condition. (Definition (8)(A) in [5].) 

Evidence 
Data supporting the existence or truth of something. (Adapted from 3.1936 in [16].) 
Notes: 
1. Examples of means of obtaining “raw” evidence: Test, measurement, and observation. 
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2. Examples of evidence incorporating reasoning: 
2.1. Confirmation by static analysis that an implementation satisfies its design specification. 
2.2. A claim at one level of integration used as evidence in a claim for the next higher level of integration of a 

system. 

Failure 
The termination of the ability of an item to perform a required function. [22] 
Notes: 
1. After failure, the item has a fault. [22] 

2. “Failure” is an event, as distinguished from “fault,” which is a state. [22] 

3. This concept as defined does not apply to items consisting of software only. [22] 

4. The following definitions represent the perspectives of different disciplines to reinforce the definition given above: 

4.1. The termination of the ability of an item to perform a required function (Definition (1)(A) in [5]). 

4.2. The termination of the ability of a functional unit to perform its required function (Definition (1)(N) in [5]). 

4.3. An event in which a system or system component does not perform a required function within specified 
limits; a failure might be produced when a fault is encountered (Definition (1)(O) in [5]). 

4.4. The termination of the ability of an item to perform its required function (Definition 9 in [5]; from a former 
standard for “nuclear power generating station”). 

4.5. The loss of ability of a component, equipment, or system to perform a required function (Definition 13 
in [5]). 

4.6. An event that might limit the capability of equipment or a system to perform its function(s) (Definition 14 
in [5] from “supervisory control, data acquisition, and automatic control”). 

4.7. The termination of the ability of an item to perform a required function (Definition 15 in [5] from a former 
standard for “nuclear power generating systems”). 

Failure analysis 
The logical, systematic examination of a failed item to identify and analyze the failure 
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [22].) 

Failure mode 
The effect by which a failure is observed to occur. [23][24] 
Notes: 
1. A failure mode is usually characterized by description of the manner in which a failure occurs. For example, in 

the case of a relay which fails to close on command, the failure mode is fails to open or fails to close. [23] 

2. A failure mode is not characterized in terms of the failure mechanism [23] 

3. A failure mode is not characterized in terms of the failure effect. [23] 

4. A set of failure modes is characterized in the context of a particular level of assembly or integration. For example,  
a failure mode at one level of assembly might be an effect at the next higher level of assembly. [23] 

5. Referring to note 3 for failure, in RIL:-1101. the term,.failure mode, is not applied to a software item. 

Failure modes and effects analysis (FMEA) 
A qualitative method of reliability analysis which involves the study of the failure modes which 
can exist in every subitem of an item, as well as the determination of the effects of each failure 
mode on other subitems of the item and on the required functions of the item. (191-16-03 
in [22].) 
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Note: 
1. Referring to note 3 for failure and note 5 for failure mode, in RIL:-1101, the term, FMEA, is not applied 

to a software item. 

Fault 
The state of an item characterized by inability to perform a required function, excluding the 
inability during preventive maintenance or other planned actions, or because of lack of external 
resources. (191-05-01 in [22]) 
Notes: 
1. A fault is often the result of a failure of the item itself but may exist without prior failure. 
2. Also see “defect.” 
3. Distinguish from failure, mistake, and error. 
4. (Derived form) Faulty: Pertaining to an item that has a fault. 
5. Latent fault: Fault remaining in the digital safety system placed in operation. Also see “resilience.” 

Fault analysis 
The logical, systematic examination of an item to identify and analyze the probability, causes, 
and consequences of potential faults. (191-16-11 in [22]) 

Fault Mode 
One of the possible states of a faulty item, for a given required function. (191-05-22 in 
[22]) 

Fault Modes and Effects Analysis (FMEA) 
A qualitative method of reliability analysis, which involves the study of the fault modes, which 
can exist in every sub-item of the item, and the determination of the effects of each fault mode 
on other sub-items of the item and on the required functions of the item. (191-16-03 in [22]) 

Fault tolerance 
The ability of a system or component to continue normal operation despite the presence of 
hardware or software faults (Definition 1 in 3.1127 in [16]). 
Notes: 
1. “Fault tolerance” is also defined as a discipline pertaining to the study of errors, faults, and failures and 

of methods for enabling systems to continue normal operation in the presence of faults (Definition 3 
in 3.1127 in [16]). 

2. Derived form: “Fault tolerant” or “fault-tolerant”: Pertaining to a system or component that is able to 
continue normal operation despite the presence of faults (3.1128 in [16]). 

3. For example: Conditions that might degrade the performance of a function of the system are identified; 
in anticipation, a constraint is formulated to prevent such degradation, and the resulting system is able 
to continue performance of the required function when the anticipated conditions arise. 

Fault-tree analysis (FTA) 
An analysis to determine which fault modes of the sub-items or external events, or combinations 
thereof, might result in a stated fault mode of the item, presented in the form of a fault tree 
(191-16-05 in [22]). 
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Feasible 
Capable of being done with the means at hand and circumstances as they are. (Entry for 
“feasible” in [3]) 
Notes: 
1. Other definitions also impose such constraints as: 

1.1. Practicability. 
1.2. Reasonable amount of effort, cost, or other hardship. [25] 
1.3. Ease and convenience. (Entry for feasible in [1]). 

2. Such constraints distinguish “feasibility” from “possibility.” 

Freedom from interference 
Freedom from degradation of the performance of a function resulting from interaction across the 
system and its environment or interaction across elements of the system. 

Note: 
1. Interference: Interaction across a system and its environment or across elements of a system that can 

degrade the performance of a function. It is not limited to propagation of a failure. 

Hardwired 
Pertaining to a circuit or device whose characteristics and functionality are permanently 
determined by the interconnections107 between components108 (Adapted from Definition 3 in [5]). 

Note: The interconnections referred to here are at the level of the printed circuit board or 
cabinet, not those internal to integrated circuits. 

Hazard 
Potential for harm.109 
Notes: 
1. Usage of the term, hazard, in RIL-1101 is  bounded to the context of the object of analysis (e.g. a digital safety 

system for an NPP) and its defined environment. Usage of the term, hazard, without such a context is not 
meaningful. 

2. Definition A in [26] (which is the same as definition 3.1283-1 in [16]) elaborates on the “potential for harm” as 
follows, “An intrinsic property or condition that has the potential to cause harm or damage.” 

3. At the initial stage of hazard logging (before any analysis of the initial finding), the log might include an item, 
which is identified as a hazard, but, after some analysis, is recognized not to be a hazard as elaborated in note 2 
(e.g., it might be recognized as an event).and recharacterized.  

4. Examples: 

1.1. A potentially harmful condition. 
1.2. A potentially harmful circumstance. 
1.3. A potentially harmful scenario. 

                                                 
107 Examples: Wiring in cabinets and printed paths in circuit boards. 
108 Examples: Relays, AND-gates, and OR-gates. 
109 In general, potential for “loss” of any kind that is of concern, but the focus of RIL-1101 is  potential for harm 
through the degradation of a safety function allocated to the object under analysis. 
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Hazard analysis 

Hazard analysis (HA) is the process of examining a system throughout its lifecycle to identify 
inherent hazards (see hazard identification) and contributory hazards and to formulate 
requirements and constraints to eliminate, prevent, or otherwise control them. 

Notes: 
1. The “hazard identification” part of HA includes the identification of losses (harm) of concern. 

2. This definition is narrower than many definitions of HA, as explained below: 

1.1. The scope of the definition excludes the verification that the requirements and constraints have 
been satisfied. 

1.2. The scope of HA is limited to identification of hazards (including contributors) and formulation of 
corresponding constraints. Activities to satisfy these constraints (e.g., architectural design, detailed 
design, implementation, and associated processes) are treated as part of the development 
process. 

1.3. The scope of the definition does not explicitly include quantification. Where appropriate (e.g., for a 
hardware component), quantification of its reliability would be implicit in the activity of formulating 
requirements and constraints. 

Hazard identification 
The process of recognizing that a hazard exists and of defining its characteristics [16]. 

Indicate 
To be a sign or symptom of, (Indicate in [1]). 

Notes: 
1. Derived form: “Indicator”—A device or variable that can be set to a prescribed state based on the 

results of a process or the occurrence of a specified condition. [5] 

2. Often an indicator is an estimate or a result of evaluation, possibly incorporating judgment, and not 
measured on a standardized scale (or norm). 

3. An indicator is created for its potential utility in facilitating comparison of the current state with the goal 
state rather than for absolute accuracy. 

4. Contrast with quality measure. 

Information 
Data that has been given some meaning within a particular context, such that it can be shared 
among its users. (Adapted from 3.1396 in [16]). 

Intended 
Intentional. (Meaning 2 in [2].) 
Notes: 
1. An intended item might be  one that is not a direct, explicit requirement, but could have been derived 

from an explicit goal or requirement. 

2. Derived form: “Unintended,” meaning “not intentional” (i.e., it was not even required indirectly or 
implicitly).  

3. Also see unwanted. 
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Information hiding 
The principle of segregation of design decisions in a computer program that is most likely to 
change, thus protecting other parts of the program from extensive modification if the design 
decision is changed. The protection involves providing a stable interface which protects the 
remainder of the program from the implementation (the details that are most likely to change). 

Interaction 
A kind of action that occurs when an object affects another.  
Notes: 
1. An interaction may affect more than one object. 

2. An interaction may involve more than two objects. 

3. One object may affect another through other intermediate objects (i.e., the interaction might be indirect, 
implicit, or a side effect of some other interaction). 

4. The direct effect of an interaction might not be observable, when the system or its environment are in a 
steady state.  

5. An interacting object in the environment of the affected object may be a human, an automated system, 
or data.  

6. The effect of an interaction may be time-delayed. 

7. The number of intermediaries and delays might obscure the cause-effect relationship. 

8. An interaction might be unintended, unwanted or unspecified. 

9. An interaction might result from some abnormality; for example, invalid input, a hardware malfunction, 
or a human mistake. 

Item (entity) 
Any part, component, device, subsystem, functional unit, equipment, or system that can be 
individually considered. (191-01-01 in [22]) 
Notes: 
1. In [26], the term “element” is used to mean “item.” 

2. An item may consist of hardware, software, or both, and may, in particular cases, include people. 

3. A number of items (e.g., a population of items) or a sample may itself be considered an item. 

Mechanize 
Introduce machines or automatic devices into a process or activity (Entry for mechanize in [1]). 

Mistake 
A human action that produces an incorrect result (Definition 3 in [5]). 
Notes: 
1. In the context of developing a software-dependent system, this definition is applicable to mistakes 

concerning requirements development; for example: 

1.1. Elicitation. 
1.2. Transformation of intent into requirement or constraint specification. 
1.3. Explicit statement of assumptions (e.g., about the environment). 
1.4. Respective V&V activities. 

2. Similarly, this definition is applicable to hazard analysis activities, which are critically dependent upon 
the performer’s competence. See Section C.4 in Appendix C. 

http://en.wikipedia.org/w/index.php?title=Design_decisions&action=edit&redlink=1
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3. The fault-tolerance discipline distinguishes between the human action (a mistake), its manifestation 
(a hardware or software fault), the result of the fault (a failure), and the amount by which the result is 
incorrect (the error). [5] 

Mode 
A subset of all the possible functionality and behaviors of a system. 
Notes: 
1. See Appendix H for examples of NPP modes. 

2. Referring to the example in Appendix H, the collection of all the modes would characterize all the functionality 
and behaviors of an NPP-level system. 

3. In a well-engineered system, valid or eligifble transitions across modes are well defined. 

4. The concept of modes and mode transitions can also be applied to finer levels of integration or assembly. 

5. The concept of mode is similar to the concept of state, but the difference is that a state characterizes the exact 
operating condition of a system.  

Mode confusion 
A situation in which an engineered system can behave differently from its user’s expectation 
because of a misunderstanding or inadequate understanding of the system mode or state. 

Organizational culture 
Deeply rooted assumptions about human nature, human activities, and social relationship 
shared by members of an organization and their expression in values, behavioral patterns, and 
artifacts found within the organization. 

Process 
A set of interrelated activities which transforms inputs into outputs. (Definition 12(A) in [5] and 
Definition 3.2217-1 in [16].) 
Notes: 
1. Definition 4 in [5] makes “including the transition criteria for progressing from one (activity) to the next” explicit. 

2. In definition 4 in [5], the expression “that brings about a result” corresponds to “which transforms inputs into 
outputs.” The latter is used in the definition above because it identifies a set of starting conditions (inputs), a set 
of end conditions (outputs), and the transformational purpose of the process. 

3. Examples of transformational processes in an engineering lifecycle of a product: requirements, architecture, 
detailed design, and implementation. If the overall engineering is considered a lifecycle process, these may be 
identified as phases in that lifecycle process. 

Product 
Result of a process. (3.2257-4 in [16]) 
Notes: 
1. Referring to Note 3 for process, the term “product” may be used for the final product or for a result of a particular 

phase of a lifecycle process.  

2. System-requirements specifications, system-architecture specifications, detailed design specifications, (software) 
source code, and (software) executable code can all be considered “products.” 
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Quality 
Capability of product to satisfy stated and implied needs when used under specified conditions. 
(Adapted from 4.51 in [27].) 

Notes: 
1. This definition differs from the ISO 9000:2000 “quality” definition; it refers to the satisfaction of stated and implied 

needs, while the ISO 9000 quality definition refers to the satisfaction of requirements. 

2. The term “implied needs” means “needs that might not have been stated explicitly (e.g., a need that is 
considered to be evident or obvious or a need implied by another stated need).” 

3. In this context, the term “quality of service” has also been used to mean “quality.” 

4. A “quality model” is a defined set of characteristics, and of relationships between the characteristics, which 
provides a framework for specifying quality requirements and evaluating quality. (Adapted from 4.44 in [27].) 

5. A “quality measure” is an attribute of quality to which a value is assigned. Also see scale. 

6. “Quality in use” is the capability or property of the product to enable specific users to achieve specific goals in 
specific contexts of use. The expression “in use” refers to the expectations of the end user. 

6.1. Actual quality in use might be different from quality in use measured in a test environment earlier in the 
product lifecycle, because the actual needs of users might not be the same as those reflected in the test 
cases or in the requirements specifications. 

6.2. Quality-in-use requirements contribute to identification and definition of external software quality 
requirements. 

6.3. An example of quality in use: Safety (freedom from harm). 

7. “Measurement of external quality” refers to measurement from an external view of the product, in which targets 
are derived from the expected quality in use and are used for technical verification and validation. For example, 
external software quality would be measured in terms of its capability to enable the behavior of the system to 
satisfy its quality-in -se requirements, such as safety. 

8. “Measurement of internal quality” refers to measurements during the developmental phases of the product 
lifecycle. Targets are derived from targets for measurement of external quality. 

Reason 
Argument; a logical sequence or series of statements from a premise to a conclusion (adapted 
from entry for argument in [2]). 
Notes: 
1. “Argument”: Also see  [28]. 

2. Derived forms: 
2.1. Reasoning: The use of reason. 
2.2. Reasonable: Being in accordance with reason (entry for reasonable in [2]). 

Reliability (symbol: R(t1, t2)) where t1 and t2 are the start and end times of the interval 
respectively. 

The probability that an item can perform a required function under given conditions for a given 
time interval (t1, t2) (191-12-01 in [22]). 

http://www$/#@rohan.sdsu.edu/~digger/305/toulmin_model.htm
http://www$/#@rohan.sdsu.edu/~digger/305/toulmin_model.htm


 

RIL-1101 Page 84 
 

Notes: 
1. It is generally assumed that the item is in a state to perform this required function at the beginning of the 

time interval.110 

2. The term “reliability” is also used to denote the reliability performance quantified by this probability (see 
191-02-06 in [22]). 

3. This definition does not apply to items for which development mistakes can cause failures, because 
there is no recognized way to assign a probability to development mistakes. 

Requirement 
Expression of a perceived need for something to be accomplished or realized (adapted 
from 4.47 in [27]). 
Notes: 
1. A “functional requirement” is a requirement that specifies a function that a system or its element must be able to 

perform (adapted from 4.22 in [27]). 

2. A “quality requirement”111 is a requirement that specifies a quality of a system or its element, where quality may 
be one of the following: 

2.1. Quality in use (e.g., safety). Quality-in-use requirements specify the required level of quality from the end 
user’s point of view.  

2.2. External quality. Also see note 7 in the definition of quality. 

2.3. Internal quality. Also see note 8 in the definition of quality. 

Resilience 
The property of a system or its element to recover from faults. 
Notes: 
1. “Resilience” has been used to describe a property of a system; however, this meaning is not defined in any of the 

standards used as references for safety, systems, or software engineering. This usage is metaphoric. derived 
from the common-usage meanings given in notes 2 and 3. Use the term “fault tolerance,” usage of which is well 
supported in the fault-tolerance discipline. 

2. “Resilience” is most commonly used and defined in the context of people. For example: Resilience is the 
capacity to withstand stress and catastrophe (http://www.pbs.org/thisemotionallife/topic/resilience/what-
resilience). 

3. “Resilience” is also used and defined as a mechanical property of an object or material. For example: The 
physical property of a material that can return to its original shape or position after deformation that does not 
exceed its elastic limit. (Entry for resilience in [3]) 

Robustness 
The degree to which a system or component can function correctly in the presence of invalid 
inputs or stressful environmental conditions (3.2601 in [16].) 

Scale (for a quality measure) 
An ordered set of values, continuous or discrete, or a set of categories to which an attribute is 
mapped (adapted from 2.35 in [8]). 

                                                 
110  For a software component that is faulty to begin with, use of the term “reliability” is neither meaningful 

nor helpful; instead, it leads to the misapplication of analysis techniques that served well for traditional 
hardware. 

111 Colloquially, these are also known as non-functional requirements. 

http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
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Notes: 
1. The type of scale depends on the nature of the relationship between the values on the scale [8]. 

2. Four types of scale are commonly defined [8]: 
2.1. Nominal: The measurement values are categorical. 
2.2. Ordinal: The measurement values are rankings. 
2.3. Interval: The measurement values are equi-spaced. 
2.4. Ratio: The measurement values are equi-spaced, where the value 0 (zero) is not mapped to any attribute. 

3. The valid value space is predetermined. 

4. The mapping of the magnitude of the measured attribute to a value on the scale is predetermined. 

Separation of concerns 
The process of separating a computer program into distinct features that overlap in functionality 
as little as possible. A “concern” is any piece of interest or focus in a program. Typically, 
concerns are synonymous with features or behaviors [29]. 

State 
The present condition of a (dynamic) system or entity. 
Notes: 
1. The condition represented by a state is an abstraction of the complete set of observable properties (also 

known as state variables) that characterize the behavior of a system.  

2. The behavior of a system is characterized as its response to stimuli (set of inputs). The response may 
result in some output and state-change (i.e., change in the set of values of its state variables). 

State space 
The set of all possible states of a dynamic system [30]. 

Note: 
Each state of the system corresponds to a unique point in the state space. 

System 
Combination of interacting elements organized to achieve one or more stated purposes [31]. 
Notes: 
1. A system may be considered as a product or as the services it provides (adapted from [31]). For 

example, at its conceptualization stage, a system may be described in terms of the services it provides 
and its interactions with its environment without identifying its constituent elements. 

2. The words “combination” and “organized” (instead of “collection”) emphasize that a system is an 
“integrated composite” as characterized in the definition for “system” in [32]. 

3. The expression “to achieve its stated purposes” corresponds to the expression “a capability to satisfy a 
stated need or objective” used in the definition for “system” in [32]. 

4. In practice, the interpretation of its meaning is frequently clarified by the use of an associated noun or 
nouns (e.g., reactor-protection system). (Adapted from [31].) 

5. RIL-1101 is focused on a digital safety system and its interactions with its environment. Operators, 
thermo-hydraulic processes, and related supporting peripheral processes are part of the environment.  

6. At the concept phase of the system lifecycle, a system may have no identified internal elements.  

6.1. Then, it may be characterized, studied, or analyzed in terms of its behavior and its interactions 
with its environment.  

6.2. In the trivial case, the system may have no identified constituent elements. 
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7. Systems can be composed of systems. A system with only software elements is also a system. For 
example, if a program is composed of subroutines, the subroutines are elements and the program is a 
system. 

Systemic 
Embedded within and spread throughout and affecting a group, system, or body. 
Note: 
1. For example, organizational culture and competence are systemic causes, which can affect more than 

one element in a system in more than one way. 

Systematic failure 
Failure, related in a deterministic way to a certain cause, that can be eliminated only by a 
modification of the design or of the manufacturing process, operational procedures, 
documentation, or other relevant factors [22]. 
Note: 
1. Examples of causes of systematic failures include human mistakes in the following activities: 

1.1. The system safety requirements and constraints. 
1.2. The specification, design, manufacture, , or integration, or configuration of the hardware. 
1.3. The specification, design, implementation, or integration, or configuration of the software. 

Traceability 
Discernible association among two or more logical entities, such as requirements, system 
elements, verifications, or tasks. 

Unwanted 
Not needed. (Derived from Definition 3 for “want” in [7].) 

Note: 
1. The need is not intrinsic to the specified requirements. 

Validation 
Confirmation that a product satisfies the needs of the customer and other identified 
stakeholders. (Adapted from 3.3264-5 in [16].) 
Notes: 
1. “Confirmation” is used instead of “assurance,” the word used in [16], for these reasons: 

1.1. To avoid confusion with the use of the word “assurance” in RIL-1101. 
1.2. To achieve consistency with the use of “confirmation” in the definition of “verification.” 
1.3. “Confirmation” subsumes the term “the process of evaluating” used in definition A in [26]. 
1.4. “Confirmation” subsumes the term “the process of providing evidence” used in definition B in [26]. 

2. “Validation” includes confirmation that the requirements are correct, complete, consistent, and unambiguous. 

3. The stakeholder-requirements definition activity includes the transformation of various needs into requirements, 
including the requirements for validation [15]. 

3.1. In [26], validation of the stakeholder-requirements definition includes HA. 

3.2. In the context of an NPP safety system, “stakeholder requirements” mean NPP safety requirements 
allocated to and intended for this safety system. 

3.3. “Requirements for validation” include assurability. 

4. The activity of validation includes the confirmation that the specification for each lifecycle phase satisfies the 
needs of the customer and other identified stakeholders. 
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5. A clarification of the expression “the needs of the customer and other identified stakeholders” is provided in 
definition B in [26] as follows: Solve the right problem (e.g., correctly model physical laws, implement business 
rules, and use the proper system assumptions) and satisfy intended use and user needs. 

6. The concept of “validation,” as defined, subsumes the concept of “verification.” However, there is a lack of clear 
agreement across various authorities on the subsumption of “verification” in “validation.” 

7. “Product” subsumes the elaboration “system, software, or hardware and its associated products” used in 
definition B in [26]. 

8. “Satisfies” is used instead of “meets,” the word used in [16] in order to maintain consistency with the usage in the 
definition of “verification.” 

9. The elaboration “….satisfy requirements allocated to it at the end of each life cycle activity” in definition B in [26] 
is subsumed in the expression “satisfies the needs of the customer and other identified stakeholders”. 

Verification 
Confirmation that specified requirements have been satisfied. (Adapted from 3.3282-3 in [16].) 

Notes: 
1. Various standards and authorities have different definitions which are inconsistent with each other. The definition 

given above abstracts commonality to the extent possible. The following notes provide explanations, with 
attempts to reconcile some differences across certain definitions where possible. 

2. The term is also used to mean “the process of confirmation that specified requirements have been satisfied.” The 
usage context will distinguish the two meanings, “confirmation” and “process of confirmation.” 

2.1. Definition A in [26] defines verification as “The process of evaluating a system or component to determine 
whether the products of a given development phase satisfy the conditions imposed at the start of that 
phase.” The act of evaluating includes reviewing, inspecting, testing, checking, auditing, or otherwise 
determining and documenting (also see note 9 below). The term “confirmation” in the definition is used to 
mean that the result of the determination is TRUE.” 

2.2. The object of verification is implied in the definition (e.g., confirmation that a product satisfies its specified 
requirements). 

3. Definition 3 in [16] uses the term “fulfilled”; however, to reduce potential ambiguity, the term “satisfied” is used 
(which is also used in definition 1 in [16]) in the general sense of propositional satisfaction and constraint 
satisfaction. 

3.1. Definition 2 in [16] uses the term “formal proof,” favoring this substitution. 

3.2. Definition 6 in [16] uses the term “comply with,” which may be mapped conservatively into “satisfy.”  

3.3. Definition B in [26] uses the term “conforms to,” which may be mapped conservatively into “satisfies.” 

4. Definitions 3 and 6 in [16] also include the phrase “through the provision of objective evidence.” This phrase is 
omitted because the concept “satisfied,” as explained in Note 3, subsumes it. 

5. Definition A in [26] uses the expression “satisfy the conditions imposed at the start of that phase”; this expression 
is mapped into “specified requirements” in the definition above. 

6. Definition B in [26] elaborates “… for all life cycle activities during each life cycle process”; the definitions of 
product and process subsume this elaboration. 

7. Definition B in [26] elaborates “satisfy standards, practices, and conventions during life cycle processes; and 
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle 
activities”; the term “specified requirements” in conjunction with the definitions of product and process subsumes 
this elaboration. 

8. Definition B in [26] includes the statement “Verification of interim work products is essential for proper 
understanding and assessment of the life cycle phase product(s).” This statement does not add to the definition 
of “verification.” 

9. Definition 3 in [5] elaborates “The act of reviewing, inspecting, testing, checking, auditing, or otherwise 
determining and documenting whether …”; the term “process” in the definition given in Note 2 abstracts this 
elaboration. 
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10. Verification at each lifecycle phase does not imply verification of the end product, because its scope does not 
include the confirmation that the specification for each lifecycle phase satisfies the requirements at the initial 
phase (e.g., stakeholder requirements [26] for the end product). This confirmation is considered a part of 
validation activities; however, there is a lack of clear agreement across various standards and authorities on this 
separation of verification and validation. 
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APPENDIX B: Technical Review Process 
Technical reviews of this document were performed iteratively for the purpose of acquiring 
knowledge outside the nuclear power-plant (NPP) domain relevant to evaluation of an 
applicant’s hazard analysis (HA) of a digital instrumentation and control (DI&C) system for 
safety functions in a NPP. 

The Office of Nuclear Regulatory Research (RES) employed the services of Safeware 
Engineering Corporation (SEC) [1] as a neutral agent to interface with external experts. SEC 
obtained nine experts spread across safety-critical software and systems research experience 
outside of the commercial NPP industry (e.g., space exploration, military defense, and the 
aviation industry). 

Unlike typical peer reviews, in this process, the expert provided the content needed to bring the 
report to the expert’s standard of technical soundness, along with an explanation and 
justification of the modification, addition, or subtraction of material. 

Review process 
The technical reviews were performed iteratively at evolving stages of Research Information 
Letter (RIL)-1101. Each iteration was treated as a knowledge-acquisition cycle from which 
results were integrated into the development of RIL-1101 before submitting it for the next review 
cycle. 

Each review cycle followed the procedure outlined below: 

1. The NRC and SEC provided orientation to the expert as follows 

1.1. The NRC sent to the expert three documents to prepare for a face-to-face discussion: 

1.1.1. A draft of RIL-1101; 

1.1.2. A review template specific to the review cycle; and 

1.1.3. A set of slides introducing the NPP application domain, key issues addressed in 
RIL-1101, and scope and request-response sequence for the project. 

1.2. Then, in a face-to-face meeting, the NRC and SEC walked the expert through the slide 
set, engaging the expert in clarifying discussion. Then NRC and the expert discussed 
the review template for clarification of the task and how well it matched the expert’s 
interest. The review was scoped accordingly. 

2. The expert provided a written review response as follows: 

2.1. Responses to specific questions in the NRC-provided review template. Typically, the 
expert provided these responses in tabular form as suggested in the template. 

2.2. Rationale or explanation supporting the proposed changes. 

2.3. Supporting references, mostly incorporated by reference. 

2.4. Supporting examples or case studies in the expert’s experience or research to support 
an assertion or guidance item applicable to the scope of RIL-1101 (e.g., by 
generalization through inductive or abductive reasoning). 

3. NRC staff and the expert discussed the expert’s responses in a teleconference moderated 
by SEC. Most of the responses concerned the clarity of the intended messages. For 
“easy-to-resolve” comments, the disposition was discussed in the teleconference. 

4. In some cases, the expert provided modified or supplemental responses. 
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5. The NRC proposed disposition of expert’s suggestions, sometimes including followup 
questions for discussion with the expert. 

6. The NRC discussed its proposed disposition with the expert. Depending on need and 
scheduling feasibility, sometimes the NRC walked the expert through the disposition in a 
teleconference. In most cases, NRC met the expert face-to-face to clear remaining issues 
that could not be resolved efficiently through teleconferencing. 

Although the initial plan had included resolution of conflicting inputs from different experts 
through cross-expert discussion, there was no conflict between experts about technical 
soundness. 
 

Reference for Appendix B 
[1] U.S. Nuclear Regulatory Commission, “Digital Instrumentation and Control - Technical 

Engineering Services,” commercial contract V6065, September 2012, Agencywide 
Documents Access Management System (ADAMS) Accession No. ML12284A214. 

  

https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML12284A214
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APPENDIX C: Evaluating Hazard Analysis—State Of The Art 
The scope of this appendix is limited to the scope of Research Information Letter (RIL)-1101, 
especially analysis of contributory112 hazards in digital safety systems for nuclear power plants 
(NPPs), which are rooted in systemic causes. For example, it does not elaborate on analysis of 
hazards from random hardware failure. It does not discuss analysis of systems with a mix of 
safety and non-safety functions (mixed-criticality systems). Whereas almost all of the surveyed 
publications are much broader in scope, this appendix maps the extracted information into the 
narrower scope of this RIL. For example: 

1. It covers only a relevant subset of the wide range of hazard-analysis (HA) activities. 

2. It does not discuss techniques exclusively suited to analysis for random failure of hardware 
components in a system. 

3. Its starting point, the loss of concern, is the degradation of a safety function allocated to an 
NPP digital safety system; in contrast, the NPP-level loss of concern would be the unwanted 
release of radioactivity. 

C.1 Contextual interpretation of terms 
The specific interpretation of the terms, hazard and hazard analysis, depends upon the context. 
Section C.1.1 reviews the general context that was introduced in the glossary definitions of 
these terms. Section C.1.2 illustrates different types of objects, on which HA may be performed 
in the course of HA for an NPP digital safety system. Section C.1.3 introduces different 
contexts of an object of HA, based on its position in the dependency network influencing an 
NPP digital safety system. 

C.1.1 General context of hazard analysis 
The vocabulary in this appendix is defined in Appendix A. As defined and explained therein, 
a hazard is potential for harm, in the context of the digital safety system being analyzed, as well 
as in the context of its environment. A hazard is an intrinsic property or condition (state113) of 
the system, including its interaction with its environment.” HA of an object is the process of 
examining the object throughout its lifecycle to identify hazards (including contributory hazards) 
and requirements and constraints to eliminate, prevent, or otherwise control these hazards. 

C.1.2 Object of analysis 
Referring to the reference model for system integration levels depicted in Figure 4 of [1], the 
object of analysis may be any of the following: 

1. An intermediate work product of the system to be analyzed or an object within the system 
such as: 
1.1. Concept of a digital safety system; for example, a reactor-protection system (RPS). 
1.2. One of the four identical divisions of the digital safety system; the information needed 

for analysis (hereafter in this list, information source) may be the system architecture). 

                                                 
112 IEEE 1012-2012 [1], “IEEE Standard for System and Software Verification and Validation,” introduces 
the notion of contributory hazards; e.g., software and hardware contributions to system hazards. 
113 Annex J.1 in [1]: “…determine whether the contributing conditions to a hazardous state are possible.” 
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1.3. An element responsible for the voting logic used in the system; (information source: 
system architecture). 

1.4. A system at a lower level of integration (information source: system architecture). 
1.5. The most finely grained component in the integration hierarchy (information sources: 

software architecture and hardware architecture). 
1.6. An object in the environment of the object being analyzed, on which the latter depends 

(information source: NPP-wide I&C architecture). 
1.7. Result of an intermediate phase to produce any of the above (information source: 

development lifecycle model). 
2. A process activity producing a work product mentioned above (information source: process 

activity model). 
3. A resource used in a process activity mentioned above; (information source: process activity 

model). See Figure 4. 
4. Any other object in a path of contributory hazards (i.e., in the dependency network). 

C.1.3 Analysis at different levels in the dependency network 
The dependency network of the top-level system provides an organizing framework for 
supporting HA of objects in the dependency network. For each object, the starting point of its 
HA would include the following: 

1. The derived requirements allocated to it. 
2. Its boundary with respect to its environment 
3. Its relationship to its environment 
4. Associated assumptions.  

If HA of different objects is occurring concurrently (e.g., analysis for impact of changes), based 
on assumptions about their place and relationships in the dependency network, then, for the 
implications of these assumptions, see the following items in this RIL:  

• Table 3, H-culture-12; 
• Table 5, H-ProcState-4; 
• Table 9, H-SR-12 through 14; 
• Table 10, H-SRE-2G2; and 
• Table 14, item 1 of H-SAE-1G1 and H-SAE-7.1. 

C.2 Reference lifecycle model for hazard analysis 
Independent hazard analysis of a digital safety system is part of its safety-analysis activities 
(also see Section 1.7.8). These activities are performed by people who are organizationally 
independent from the mainstream development. The initial HA and verification and validation 
(V&V) are also performed by the mainstream development organization [2]. The independent 
HA is intertwined with associated development engineering activities and uses its work 
products, as depicted in Figure 9 and charted in Table 21. The independent team may engage 
the initial HA team in review and walks through its work products. 

In the context of hazards contributed through engineering deficiencies, a contributor may be 
detected and controlled during various activities in the system development lifecycle:  

1. V&V and HA activities of the mainstream system development, organization; 
2. Independent verification activities; or  
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3. Independent HA activities. 

In general, the higher the quality of the upstream processes, the smaller the hazard space 
downstream will be and the lower the number of hazards within downstream work products will 
be. On the other hand, ill-controlled upstream processes could leave such a large hazard space 
in their work products that the downstream verification and HA are rendered infeasible. 
Recognizing the wide variation in the practice of upstream system engineering, for the purpose 
of consistent comprehensible concise treatment of the inter-relationship of HA with the other 
processes, the state of the art in system and safety engineering is used as a baseline and 
reflected in the lifecycle reference model depicted in Figure 9. The reference model is derived 
from information in [1] applicable to an NPP digital safety system. Thus, the independent HA 
activities are characterized under the following premises: 

1. Mainstream system-development activities are performed in accordance with the 
specifications of their respective processes. 

2. Resources used in these development activities are qualified to meet their respective 
specified requirements or criteria. 

3. V&V processes fulfill the objectives stated in Section 1.4 of [1]. 

4. Verification activities (on the object of verification) confirm that the requirements specified for 
that object are satisfied.  

4.1. Anomalies are detected as early in the lifecycle as possible, in accordance with [1]. 

4.2. Detected anomalies are resolved in accordance with [1]. 

5. Supporting audits of the process activities in execution examine whether these activities are 
being performed in accordance with their specifications, using resources that conform to 
their respective requirements. Deficiencies are corrected promptly. 

6. Mainstream validation activities confirm that the various specifications collectively satisfy the 
requirements intended from the NPP-level safety analysis.  

7. The object of analysis has passed its V&V criteria. 

Under premises 1 through 7 stated above, independent HA activities provide an independent 
search for the remaining “conditions having the potential for functional degradation of safety 
system performance” (known as hazard identification) and seek their control (e.g., avoidance or 
elimination) through corresponding requirements and constraints. This search starts from the 
safety function of concern, first identifying the direct hazards, and then, for each hazard, 
progressing “upstream” through the dependency paths to identify the contributory hazards. The 
independent HA perspective is broader than the mainstream activities; for example, it may 
examine obscure contributors such as the following: 

• Interpretations of a requirement specification; 
• Flowdown of derived requirements and constraints; 
• Flowdown of quality requirements; 
• Validity of the process specifications and resource qualification criteria; and 
• Assumptions. 

To the extent that premises 1 through 7 stated above are not satisfied, the deficiency results in 
additional burden on the independent HA activities, requiring correspondingly additional skills 
and effort.  



 

RIL-1101 Page 95 
 

A regulatory review of HA may be viewed as yet another round of independent HA. Thus, the 
regulatory-review activities follow the same pattern. 

  Figure 9: Hazard analysis in relation to development lifecycle and verification activities. 
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C.3 HA tasks—an example set 
Table 21 outlines an illustrative example set of HA tasks, based on the reference model in [1]. 
Each of the tasks, labeled T1 through T7, is characterized in terms of a set of inputs (the 
information analyzed) and outputs (the results of the task). The rightmost column in the table 
cites the genesis of the task-formulation. An identified deficiency (e.g. inadequacy in the input 
information) requires some corrective action and change. Every change requires a review for 
the effect of the change. 

Tasks T1 through T3 start in the planning phase of the system engineering lifecycle. HA in the 
planning phase might identify gaps in the input information and thus drive engineering effort to 
fill the gaps. Phase-advance clearance is the final output. Upon this clearance, the project may 
advance to the activities of the next phase. This clearance concept is sometimes known as a 
quality gate or a safety gate. Proceeding further into development without satisfying the gate 
criteria could result in much rework and wasted effort later. In some cases, the deficiency may 
be irreparable. 

Task T4 is started in the concept phase of the system engineering lifecycle. In a “green-field” 
concept, the information available might only be a functional concept. Yet it is sufficient to 
develop the questions to be addressed from the HA perspective through the “hazard logging” 
process. In this case, task T4 may be iterated many times, as the concept evolves. 
Systematized management of change and configuration (e.g., through minor or internal version 
identifiers) enables recorded, traceable rationale underlying the evolution path. In a modification 
of an existing NPP, the concept might be much more developed (e.g., a proposed NPP-level 
I&C re-architecture), enabling more detailed investigation for the identification of (contributory) 
hazards. 

When the system concept and requirements specification become stable, task T4 transitions 
to T5, at the start of which, the term “object” refers to the system-requirements specification 
(corresponding to task 203 in [3]). Tasks T5 and T7 are iterated as the system architecture 
evolves. The iterations include task T6 when a lower level of integration is identified in the 
system architecture. 

Table 21: HA activities and tasks—a reference model 

HA activity / task Input Output 
Remarks and 
References. 

T1. Generate baseline HA plan 
for all lifecycle phases. 

1. Concept [1], including 
interactions with and 
dependencies on its 
environment. 

2. Requirements from NPP 
level safety analysis. 

3. Premises & assumptions 
on which the expected 
outcome depends, 
including conditions & 
modes of operation and 
maintenance. 

4. Plan to validate 
assumptions. 

5. Consequences of 

Baseline114 HA plan. Adapted from 
Tasks 7.1:1 
through 7.1:4 in 
Table 1a in [1] and 
Task 101.2.2 in [3]. 

T2. Identify dependencies of HA 
plan (e.g., other information, 
resources, and dependencies 
on supply chain) 

Dependencies of plan. Adapted from 
Tasks 7.1:1 
through 7.1:4 in 
Table 1a in [1] and 
from [3]. 

T3. Evaluate other plans, 
following the dependencies 
identified above. 
 
Coordinate these information 

1. Evaluation report. 
1.1. Deficiencies. 
1.2. Changes needed. 
1.3. Request for additional 

information (RAI). 

Adapted from 
Tasks 7.1:1 
through 7.1:4, 7.4, 
and 7.5 in Table 1a 
in [1]. 

                                                 
114 While mainstream HA produces the baseline, independent HA identifies changes needed. 
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HA activity / task Input Output 
Remarks and 
References. 

exchanges (e.g., timing, 
semantic compatibility, and 
format) with HA activities. 

behavior shortfalls, 
including invalid 
assumptions/premises. 

6. Overall V&V plan, 
including HA. 

7. Mainstream development 
plan. 

8. Corresponding 
information about or from 
entities in the 
dependency paths 
(e.g., up the supply 
chain). 

2. Rejection or 
Acceptance 
(including 
phase-advance 
clearance) 

Adapted from 
Tasks 1 through 4 
in Table 1a in [1]. 

3. Revision to HA plan 
as needed. 

Adapted from 
Tasks 7.1:1 
through 7.1:4 in 
Table 1a in [1]. 

T4. Understand HA-relevant 
characteristics of the object to 
be analyzed; examples: 
1. Differences from previously 

licensed systems. 
2. Exposure to unwanted 

interactions. 
3. Presence of functions not 

needed for the primary 
safety function. 

4. Division of work and 
communication challenges 
across organizational 
units/interfaces. 

5. Compatibility of lifecycle 
models, processes, 
information-exchange 
interfaces, etc. 

6. Qualification and 
compatibility of tools across 
these interfaces. 

7. Compatibility of conditions 
of use for reused objects. 

8. Correct, complete 
flowdown, decomposition, 
or derivation of 
requirements. 

9. Identification of 
dependencies 
(e.g., feedback paths and 
hidden or obscure 
couplings). 

10. Premises and 
assumptions, both explicit 
and implicit. 

11. Other challenges to 
analyzability. 

Items above plus: 
9. Other requirements 

allocated to the object. 
10. Nonsafety-related 

constraints on the object. 
11. Relationship with 

NPP-wide I&C 
architecture. 

12. Distribution of 
responsibilities across 
organizational 
units/interfaces. 

13. Provisions for information 
exchange across 
organizational 
units/interfaces. 

14. Lifecycle models, 
processes, resources 
(e.g., tools and 
competencies), and 
information-exchange 
interfaces. 

15. Identification of reused 
objects and conditions of 
use. 

16. Explicit record of 
dependencies. 

17. Prior HA results, if any. 

1. Revision to HA plan. 
2. Addition to hazard 

log. [4] 
3. Change needed; 

examples: 
3.1. Making assumptions 

explicit; 
3.2. Improvement in 

knowledge of 
dependencies; 

3.3. Making lifecycles and 
processes 
compatible; 

3.4. Making 
information-exchange 
interfaces compatible; 

3.5. Consistency across 
automation and 
human roles and 
procedures [5]. 

3.6. Qualification of 
reused objects 
(e.g., tools); 

3.7. Change in allocation 
of a requirement; 

3.8. Other constraints; 
and 

3.9. Other derived 
requirements. [6] 

4. RAI. 

Adapted from 
Tasks 7.2:1(a, f, 
and g), 7.2:2(b 
and d), and 7.2:3(a 
and b) in Table 1a 
in [1] and from 
Tasks 201 and 202 
in [3]. 

T5. Analyze object115 for 
(contributory) hazards. See the 

Items above plus information 
specific to object of analysis 

1. Addition to hazard 
log. 

Adapted from 
Tasks 7.1:5 

                                                 
115 Examples of objects: a work product from any phase in the development lifecycle, a work product for 
the top-level digital safety system, some element in a lower level of integration, associated processes, 
associated resources, and any other entity in the dependency paths (e.g., in the supply chain). 
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HA activity / task Input Output 
Remarks and 
References. 

corresponding section and table 
in RIL-1101. For a safety 
system or its element, it 
includes, for example, a search 
for: 
1. Single-point failure; 
2. Common-mode 

dependency; and 
3. Common-cause 

dependency. 

(see Section C.1.2). 2. Change needed. 
3. Examples: 
3.1. As in T4; 
3.2. Derived requirement 

(on process) to prove 
that a contributing 
hazard cannot occur; 
and 

3.3. Derived requirement 
or constraint on 
object. 

and 7.1:6 in 
Table 1a in [1], from 
Table 1b in [1], and 
from [7]. 

4. Rejection or 
Acceptance 
(including 
phase-advance 
clearance). 

5. Revision to HA plan 
as needed. 

6. RAI. 
T6. Integrate analyses from 
lower levels in the integration 
hierarchy and contribution paths 
up to the top-level analysis. 

Items above plus information 
needed about inter-object 
dependencies for overall 
system HA. 

As in T5.  Adapted from 
Task 7.1:7 in 
Table 1a in [1] and 
from other portions 
of [1]. 

T7. Analyze change proposal 
(e.g., hazard-control proposal). 

The change proposal, 
including information on which 
it depends (e.g., items listed 
above). 

As in T5. Abstracted from [1]. 

Referring to Sections C.1.2 and C.1.3, as the analysis identifies dependencies and the objects 
on which the findings are dependent, relevant tasks in Table 21 are performed on each 
identified object. When multiple inter-dependent objects are evolving concurrently, HA on these 
objects may be performed concurrently, formulating the needed assumptions about the inter-
dependencies. These assumptions may be used as constraints on the inter-
dependencies,driving the development. In any case, these assumptions must be validated. 

C.3.1 Evaluating the quality of HA output 
The quality of the HA output depends on three major factors: 

1. Competence—see Section C.4. 
2. Quality of the input(s)—see Section C.5. 
3. Technique—see Section C.6. 

Evaluation of the HA plan is based on the degree to which the planned HA fulfills the following 
objectives: 

1. Identify all hazards, along with the constraints on the system and its environment, which 
would enable identification of all hazards. 

2. Identify all contributory hazards, along with the constraints on the system and its 
environment, which would enable identification of all contributory hazards. 

3. Identity the constraints needed to control the identified (contributory) hazards. 
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Consequently, evaluation of a selected HA technique is based on its ability to fulfill the 
objectives stated above and on identifying the associated critical conditions, namely: 

1. A specification of the competence required to apply the technique, so that the competence 
of personnel using the technique to perform HA can be evaluated with consistency. 

2. A specification of the information required to apply the technique, so that the object of 
analysis can be evaluated with consistency. 

Criteria to evaluate HA output:116 

1. Completeness 

1.1. Analysis for all known hazards and contributors, including lessons learned from prior 
experience. 

1.2. Demonstration of a systematic approach to HA, supported by evidence and reasoning. 

2. Demonstrated consistency in the analysis of identified hazards and contributors. 

3. Consistency with assumptions used. 

4. Reference to inputs used. 

C.3.2 Hazard identification and logging 
Hazard identification, especially in the concept phase, requires extraordinary individual 
capabilities, teamwork, and a conducive organizational culture (see Appendix F). If any analyst 
or contributor to HA perceives a safety concern, a hazard, or a contributory hazard, the 
individual is encouraged to express it. The expressed item is recorded in a “hazard log” without 
immediate evaluation. Sometimes, a team engages in brainstorming to stimulate thought and 
encourage expression. The “hazard log” [4] is a means of tracking an item from initial 
expression to final disposition and closure. An entry in a hazard log is never deleted. All of the 
related information may be in a single document or it may be distributed across a set of linked 
databases; in any case, an analyst is able to make an entry readily. 

Examples of related information include the following: 

1. Information to identify the logged item: 
1.1. Item identifier; 
1.2. Descriptive title; 
1.3. Originator; 
1.4. Origination date; 
1.5. Description; and 
1.6. Perceived consequence/effect of inaction; 

2. Information to track progress: 
2.1. Action plan (from origination to closure); 
2.2. Action assignee(s); 
2.3. Status of progress in the action plan (e.g., Identified change needed to eliminate 

hazard); 
2.4. Basis to allow closure; for example: 

2.4.1. Evaluation revealed that hazard control is already in place; 

                                                 
116 Criteria may be applied to the output in any iteration of any stage of the development lifecycle. 
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2.4.2. Evaluation resulted in recharacterization of the hazard (another entry in the 
hazard log); and 

2.4.3. Addition of a constraint or derived requirement in the system engineering 
activities); 

2.5. Date of closure; and 
2.6. Name and signature authorizing closure. 

Every addition or modification of a constraint or (derived) requirement is a 
configuration-controlled item with associated change controls. 

When the object is the overall system, the corresponding HA task is the exercise of the selected 
HA technique (see Section C.6) on the information available about the object (see Section C.5). 
Execution of this process might (a) assist in the evaluation of some other item in the hazard log 
or (b) raise a new concern, which is then entered in the hazard log. 

C.3.3 Evaluation of a logged hazard 
Whereas published standards and handbooks (whose scope includes mixed-criticality systems) 
suggest evaluation in terms of levels of severity and likelihood of occurrence, in the RIL-1101 
context: 

• The level of severity of the loss of a safety function is  the highest-level and,  
• For systemic causes, the analysis first seeks to correctly identify hazards that would 

lead to the loss of a safety function and then pursues their elimination or avoidance, as 
explained next. 

In practice, a “quick” filtering or screening evaluation (e.g., see 2.4.1 and 2.4.2 in Section C.3.2) 
is performed on each logged item before delving deeper. If an accurate dependency model is 
available, the evaluation seeks to fit the logged item in the dependency model. The search for 
the fit might reveal that the dependency model is inaccurate (requiring change) or that the 
logged item is not a (contributory) hazard (leading to its closure). When the logged item is 
matched to an object in the dependency network (i.e., its sequential order in the contributory 
path is found), a corresponding HA task is formulated and sequenced in accordance with its 
order in the contributory path. 

As the evaluation of a logged item progresses, it might expose inadequacies or uncertainties in 
the information about the object being analyzed. Figure 10 depicts a structure for reasoning 
(adapted from [8]) about these uncertainties117. Suppose that the HA team is considering an 
assertion that a result of the HA (e.g., formulation of a constraint on the object being analyzed) 
will control the logged (contributory) hazard. Afterward, the team clarifies its reasoning through 
discussion, evoking challenges to the assertion and rebuttals to the challenges. The discussion 
might also reveal inconsistencies in the reasoning. In this manner, the team identifies factors 
affecting the validity of the assertion. Qualifiers are associated with the assertion; for example: 

1. Condition(s) under which the assertion is supported. 
1.1. Uncertainties may be stated as assumptions for which the truth has to be validated. 
1.2. Changes needed may be stated as constraints to be satisfied. 

2. Degree or strength of the assertion: {Strong …. Weak} 

                                                 
117 Appendix F explains how the process is applied to cross-cultural (e.g., interdisciplinary or 
inter-organizational) communication. 
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The results are recorded, showing how the assertion is supported by the evidence118, identifying 
the inference rule to support the reasoning, and the technical basis for the rule (such as a 
causal model).119 

 

 
 

If the evaluation results in a conclusion that the logged item is not a hazard, it is recorded, 
including the information depicted in Figure 10 (e.g., the reasoning, along with unresolved 
dissenting positions, if any, in the form of conditions). A resolution process ensures that the 
analysis, evaluation, resolution, and disposition of the issue are performed in a timely and 
effective manner. 

C.4 Effect of competence on quality of HA work products 
When HA is performed on an early-stage concept, with little explicit information in the concept, 
the competence factor, mentioned in Section C.3.1, is most dominant. For example, the analyst 
has to elicit information about assumptions and dependencies through systematic enquiry 
devised for the circumstances. Based on this information, the analyst would have to construct 
an analyzable model of the dependencies (e.g., control structures, showing feedback paths, 
interactions, and nested levels). These activities require extremely high competence. For an 
approach to competence management, see [9], in which reference 7 is a technical competence 
framework developed through wide consultation in the UK. 

                                                 
118 This is termed “grounds” in [8]. 
119 This is termed “backing” in [8]. 
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Figure 10: Structure of reasoning about the contribution to a hazard. 
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Competence is a critical factor [10]; for example, it is recognized in the following conditions to 
reduce hazard spaces: 

• H-0-2G1 and H-0-3G1 in Table 1 
• H-culture-6G3 in Table 3 
• H-SRE-1G{1, 2, and 3} in Table 10.  

Competence to perform HA of an NPP digital safety system includes a complement of the 
following capabilities (not necessarily in one person): 

1. Proven ability to learn120, assimilating needed new knowledge in a scientifically sound 
framework. 

1.1. Education equivalent to a master’s degree level knowledge of safety-critical industrial 
automation systems engineering. 

1.2. Ability to recognize the knowledge needed and the limitations of one’s knowledge. 

1.3. Ability to fill one’s knowledge gaps through self-study, supplemental training, and 
consultation with experts. 

2. Reasoning capability (see Figure 10); 
2.1. Objectivity. (Also see item 9.) 
2.2. Ability to abstract and generalize from one context and apply to another. 
2.3. Ability to recognize fallacies in some chain of reasoning. 

3. Self-driven update of professional knowledge through training. Examples could include the 
following: 
3.1. In the application domain:  

3.1.1. How an NPP works (energy conversion from fuel to power on the grid); 
3.1.2. Heat exchange; 
3.1.3. Critical functional elements, processes, and process-state variables in an NPP; 
3.1.4. Interdependencies of items in 3.1.3; 
3.1.5. Associated (contributory) hazards; and 
3.1.6. Study of operating experience (event reports and root-cause analysis reports). 

3.2. In the industrial automation domain: 
3.2.1. Elements for sensing, actuation, and computation; 
3.2.2. Control logic; 
3.2.3. Communication; 
3.2.4. Software/firmware; 
3.2.5. Power; 
3.2.6. Associated (contributory) hazards; and 
3.2.7. Study of operating experience (event reports and root-cause analysis reports). 

3.3. Science and engineering of distributed systems, including: 
3.3.1. Computation; 

                                                 
120 When the object being analyzed has some characteristic which the analyst has not encountered in 
past experience, as is often the case in digital safety systems, the analyst is able to acquire the needed 
knowledge with own initiative. 
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3.3.2. Communication; and 
3.3.3. Storage or buffering. 

3.4. Hazard and safety analysis; assurance methods and techniques for such systems. 

4. Competence gained through experience in analysis of systems similar in criticality, 
functionality, and configuration and evidenced through: 
4.1. Good performance under the guidance of an expert in hazard analysis. 
4.2. Good performance independently. 

5. Strongly safety-conscious. See Sections F.1 and F.3 of Appendix F. 

6. Communication skills in group activities (see Section F.4 of Appendix F), for example: 
6.1. Ability to communicate effectively and objectively with stakeholders; Succinctness. 
6.2. Ability to listen actively for understanding and learning from others. 
6.3. Ability to elicit information needed. 
6.4. Ability to explain one’s reasoning (see Figure 10) to others. 
6.5. Ability to express and explain to others insights from deep knowledge. 
6.6. Ability to develop collective communicative competence. See Section F.4.3 of 

Appendix F. 

7. Other interpersonal skills and characteristics that support teamwork (see Section F.4 of 
Appendix F). For example: 
7.1. Willingness to recognize and accept weaknesses in one’s own reasoning. 
7.2. Willingness to explain own reasoning clearly, succinctly in the face of opposition. 
7.3. Assistive rather than competitive behavior. 
7.4. Ability to evoke minority viewpoints (in particular, concerns or reservations). 
7.5. Ability to understand other team members’ frames of reference. 
7.6. Ability to assimilate differences, neutralizing biases. 
7.7. Ability to converge121 towards objectivity (see Figure 10). See “collective mindfulness” in 

Appendix F. 
7.8. Other constructive group-interaction skills. 

8. Breadth and depth of competence. 
8.1. Depth: The HA team includes individuals who have mastered the engineering 

disciplines, technologies, products or components, processes, and dependencies 
involved in each phase of the system-development lifecycle. (Maintaining this depth 
might require different people from one development phase to the next.) 

8.1.1. Knowledge of respective operating experience (what can go wrong). 
8.1.2. Track record of learning from it (how to prevent what went wrong). 

                                                 
121 Often divergent positions arise from different frames of reference, assumptions, and contexts. A 
competent analyst is able to recognize and articulate these underlying reasons, propose a unifying 
framework, and formulate qualifiers on the assertions in dispute. 
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8.2. Breadth:122 Individuals are able to understand how their respective roles fit into the 
overall HA, including the associated interdependencies. 

8.2.1. Knowledge of the environment123 of the safety system and its development. 
8.2.2. Experience in analysis of hazard groups such as those identified in RIL-1101. 
8.2.3. Experience in deriving constraints to avoid or eliminate contributory hazards. 
8.2.4. Experience commensurate with the functionality and configuration of the system. 

9. The HA team has cultural diversity,124 and is able to use it to support safety. 

C.5 Quality of information input to HA at each development phase 
Table 22 provides a broad-brush characterization of the quality of the work products (in terms of 
information richness) available for HA. For each major lifecycle-phase work product, Table 22 
compares characteristics in common practice with the state of the practice (best-in-class 
implementations) and the state of the art (leading-edge implementations, not yet scaled up) in 
HA. 

Table 22: Characterization of information richness in phase work products 

Row ID 
Work product 

of lifecycle phase Common practice 

Examples of the 
state of the practice 

(the best in the class) 
Examples of the 
state of the art 

1 Requirements from 
next higher level of 
integration; e.g., from 
NPP-level safety 
analysis. 

Textual narrative. No 
configuration-controlled 
vocabulary. “Flat list” 
organization (i.e., no 
explicit relationship 
across requirements is 
identified). 

Restricted natural language 
with defined vocabulary and 
structure across elements of 
a statement. [11] 
 

Use-case scenarios 
[12]. 

SpecTRM-RL [13] Framework for 
specification & 
analysis [14]. 

Requirements-engineering 
support in Naval Research 
Labs [15]. 
Requirements tables as 
used for Darlington 
NPP [16][17]. 
Models to support 
mechanized reasoning such 
as SysML [18]. 

 

2 Plans (such as a 
safety plan, V&V 
plan, and HA plan) 

Contain a low level of 
detail and are produced 
relatively late in the 
lifecycle. 

V&V plan. [1] 
Safety plan. 
[19] through [21] 

Integrated safety and 
security plan. 

3 Concept Combination of 
(a) block diagram 
without semantics on 
the symbols and 
(b) textual narrative 

Models to support 
mechanized reasoning [22]. 
(See note 1.) 
SysML [18], 
AADL [23], and 
Extended EAST-ADL [24]. 

META [25]. 

4 Requirements of 
digital safety system 

See row 1. See row 1. See row 1. 

                                                 
122 Providing continuity to the HA team across lifecycle phases. 
123 Also see Section 2.4.1. 
124 See reference frames in item 7.5.; examples would be belief systems, values, thought processes, 
paradigms, customs, conventions, and language. 
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Row ID 
Work product 

of lifecycle phase Common practice 

Examples of the 
state of the practice 

(the best in the class) 
Examples of the 
state of the art 

5 Architecture of digital 
safety system 

See row 3. See row 3. META [25]. 

6 Requirements for 
software in digital 
safety system 

See row 1. [26][26][27] See row 1. 

7 Architecture for 
software in digital 
safety system 

See row 3. See row 3. 
MASCOT [27] and 
AADL [23]. 

META [25]. 

8 Detailed design of 
software 

For application logic: 
Function block 
diagram [28]. 
For platform software: 
Combination of 
(a) block diagram 
without semantics on 
the symbols and 
(b) textual narrative. 

SPARK [29][30]. META [25]. 
Refinement from 
architectural 
specifications. 

9 Implementation of 
software (code) 

For platform software, 
including 
communication 
protocols: 
C programming 
language and 
processor-specific 
assembly language 

Concept of using safe 
subset of an implementation 
language: MISRA C [31][32] 
and language for 
programming FPGAs [33]. 

Auto-generation from 
detailed design. 

Notes: 
1. The models should contain enough information to understand dependencies and propagation paths for 

contributory hazards. 

C.6 Hazard Analysis Techniques—useful extractions from survey 
The selection and role of HA techniques (the third factor influencing the quality of an HA product 
mentioned in Section C.3.1) will depend on the nature of the system to be analyzed and the 
quality of the information contained in the various intermediate work products, as characterized 
in Section C.5. 

Table 23 summarizes some applicable techniques surveyed. As difficulties and limitations were 
encountered in the earlier techniques (such as those in the first three rows of Table 23), these 
techniques were extended, adapted and transformed into newer techniques (such as the ones 
in the last three rows of Table 23); the references for the latter describe some of the difficulties 
and limitations encountered in using the earlier techniques. The “Remark(s)” column identifies 
concepts found useful and limitations that might confront an average practitioner. However, the 
adaptations of HAZOP(S) devised to evolve newer techniques require extraordinary ingenuity; 
utility of the adaptations depends heavily on the skills of the analysts. 

When HA is applied to an early concept phase, it is called preliminary hazard analysis 
(PHA) [34][35]. 

For a broad survey of HA techniques, see [5], [36], and [37], and for additional guidance, 
see [38] through [42]. For a tutorial overview of HA in relation to safety-critical system 
development, see [43]. References [5], [36] through [42], and [43] are not included in Table 23 
for a technique for which technique-specific references are listed. 
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Table 23: Hazard analysis techniques relevant to NPP digital safety systems 

HA technique 
Reference(s) Remark(s) 

Acronym Expanded name 
HAZOP(S) Hazard and 

Operability Studies 
[44][45][46] Concept of using teamwork, aided by HAZOP process 

expert. 
Systematizing inquiry through keywords. 
Systematizing understanding effects through 
understanding the associated deviations. 

FTA Fault-Tree Analysis [47][48][49] Representation and understanding of fault propagation 
paths as branches of a tree. 

DFMEA Design Failure Mode 
and Effects Analysis 

[50][51][52][53] Representation of the behavior of a failed hardware 
component in order to understand its effect without 
requiring knowledge of its internals. 

FFMEA Functional Failure 
Mode and Effects 
Analysis 

[52]  Understanding the effect of the unwanted behavior of a 
function of the system without requiring knowledge of 
the system’s internals. Useful in the concept phase. 
However, the term, failure, might limit the analyst’s 
scope. 

FuHA Functional Hazard 
Analysis 

[5] It can be started in the concept phase (performed as 
preliminary hazard analysis) and allows for hazards 
arising from reasons other than failures.  

FHA Fault Hazard Analysis [36][39][42] Allows for hazardous conditions that arise even when 
no single component fails. 

CCA Cause Consequence 
Analysis 

[36][42] Concept of using causality model to understand fault 
propagation paths. Analyst may encounter difficulty 
when there is no single cause, but a number of 
contributory factors. 

W/IA What-If Analysis [40][42] More free-wheeling than FuHA. 
CCFA Common-Cause 

Failure Analysis 
[36][39][42] Requires sufficient design definition to identify common 

causes. The term, failure, might limit the analyst’s 
scope. Analyst may encounter difficulty when there is 
no single cause, but a number of contributory factors. 

HACCP Hazard Analysis & 
Critical Control Points 

[54] Concept of focusing on critical process variables that 
affect the outcome. 

SHARD Software Hazard 
Analysis and 
Resolution 

[45] Adaptation of HAZOP to software through customization 
of the keywords. 

FPTN/FPTC Fault Propagation and 
Transformation 
Network/Calculus 

[55] Representation and analysis of fault propagation when 
the faults are transformed during propagation and when 
there are feedback paths, supporting mechanized 
traversal and reasoning. 

DFM Dynamic Flowgraph 
Method 

[56] through [58] Behavior modeling of the system in the finite state 
machine paradigm facilitates or enables: 
• Mathematical underpinning. 
• Analysis of the system’s interactions with its 

environment. 
• Analysis of dynamic behavior across its elements. 
• Mechanized traversal. 
• Mechanized reasoning, especially if a directed cyclic 

graph is used. 
STPA System-Theoretic 

Process Approach 
[59] through [62] • Applicable at concept phase (without a finished 

design). 
• Applicable to understanding of systems of 

organizational culture. 

HAZOP(S) has been adapted to analyze software [45]; this adaptation has been extended to 
data-flow-oriented software architecture [45], and, later, extended to systems with feedback and 
systems in which the initial fault is transformed into other faults as it propagates  [64][64]. These 
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concepts and principles have influenced the AADL [23] error annex, which supports analysis of 
fault propagation. 

Recently, a technique similar to the adaptations of HAZOP mentioned above, namely STPA, 
has been demonstrated in NPP applications [59][60][61][62]. For a comparative experimental 
study comparing STPA with five techniques, see [59][60]. 

If HA is performed on a state-of-the-practice or state-of-the-art work product, such as the ones 
shown in Table 22, and if all behavior-influencing assumptions and dependencies were already 
explicit in a system architecture model, the search for (contributory) hazards could be 
automated [57], reducing the dependence on extremely high competence. However, 
model-based approaches introduce their own contributory hazards; the analysis for these 
contributors requires highly specialized competence. 

See [64] for HA of device interfaces. 

For an example of showing freedom from exceptions in software implementations (which are 
contributing hazards), in addition to showing conformance to specifications, see [30]. 

Static analysis tools such as [30] identify data, information, and control flow dependencies in 
software. 

Hazard analysis can be integrated with development using a tool-supported, model-driven 
engineering environment such as the AADL framework [65]. Its Error Model Annex can be used 
to annotate the AADL model of an embedded system to support a FTA and FMEA [66][67]. 
Researchers are extending this environment to support STPA [68]. Also see Appendix K for 
direction of advancement in modeling dependencies for hazard analysis. 
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APPENDIX D: Refinement 
Enabling verifiability earlier in the lifecycle through stepwise refinement 

Author: Dr. Manfred Broy, Technische Universität München 
http://www4.in.tum.de/~broy/ 
Integrative editing by Sushil Birla 

D.1 Purpose and Scope 
This appendix explains refinement (see Section D.2) as an enabler for the verifiability and, thus, 
the assurability of a system (see item H-S-1.1G1.4 in Table 8). 

The scope of this appendix is limited to the introduction of the kind of refinement needed to 
support the purpose stated above (rather than covering refinement of all kinds found in 
literature). For example, excluded from the scope is the case in which a specification is 
expressed through an informal language and informal diagrams. Such a specification might be 
ambiguous and its meaning might differ, depending on individual subjective judgment, as 
illustrated in the following situation: 

When a system125 is conceived, typically its specification is expressed in a language 
natural to the conceiver (i.e., informal language). The specification may be incomplete 
(i.e., not all the properties of the system are expressed, basing the economy of 
expression on an implicit context), inconsistent, and ambiguous. Different individuals with 
different mental models (e.g., of the conceiver’s implicit context and assumptions) might 
have different interpretations, using their different mental models and judgment to fill in 
the implicit or missing information in different ways. Transforming the informal description 
into a complete, consistent, unambiguous126, correct set of requirements specification 
may require engineering activities (e.g., elicitation; system-level hazard analysis; 
validation) other than refinement [1]. 

This rigorous form of refinement reduces sources of uncertainty in the verification process. This 
benefit is further discussed in Section D.3 and the corresponding required restrictions are 
introduced in Section D.4. 

D.2 Abstraction and refinement 
Abstraction is a view of an object that focuses on the information relevant to a particular 
purpose and ignores the remainder of the information [2]. 

Conversely, refinement is a detailed description that conforms to another (its abstraction), 
perhaps in a somewhat different form [3]. 

Two specifications, S0 and S1, are in a refinement relation if everything described by S0 can 
also be concluded by specification S1. This relation also ensures that S1 does not add any 
behavior not included in S0 (i.e., no additional behavior is visible at the external interface). 

Stepwise refinement decomposes the development process into a sequence of transformation 
steps, as depicted in Figure 11, in which each successive step refines its input specification 
([4] and [5]). Each transformation step entails some design decisions [6]. In other words, it 
reduces the design space for the subsequent steps. 

                                                 
125 “System” here refers to the final product (i.e., the implementation installed in a plant). 
126 Typically, a formal language is used to eliminate ambiguity and facilitate mechanized reasoning. 

http://www4.in.tum.de/~broy/
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Figure 11: Stepwise refinement: design decisions are made in small steps. 

The concept of refinement, in its broadest sense, is applied to the specification of many aspects 
of a system and many kinds of its elements, such as: 

• Data element (see [7]) 
• Data structure 
• Function 
• Requirement 
• System interface and interface behavior 
• System architecture 
• Hardware element 
• Software element 
• Human element 
• System implementation 
• Process 
• Procedure (e.g., operating instructions) 

Some simple examples of refinement are given in Table 24. 
Table 24: Simple examples of refinement 
Type of data 
or 
information Example of abstract level Example of refined level 
Data Length. Length in SI units; value has a specified 

precision level. 
Data structure Sequence of a given length. Bounded one-dimensional array. 
Structured 
data 

Sequence of last 10 measured values 
of distance (length) in SI units. 

One-dimensional array of length 10, to which 
each element can be sent (written) or from 
which each element can be retrieved (read) as 
a value of length in SI units, but in which each 
element is stored in a compact form. 

 

 

 

 

 

  

Finished product 

S0 

S1 

S2 

S3 

S4 

S5 

Sn 
Progressively 

reduced design space 

Refinements 

Design decisions (DD) 
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Type of data 
or 
information Example of abstract level Example of refined level 
Structured 
data 

Location of point A in space with 
respect to a given origin and some 
reference frame. 

Location and orientation of point A with 
respect to a Cartesian reference coordinate 
frame C0; all measurements are in SI units 
and location is designated AC0. 

Function Calculate the location of A with respect 
to another Cartesian coordinate 
frame C1 using IEEE 754, “IEEE 
Standard for Floating-Point 
Arithmetic”; the result is 
designated AC1. 

Calculate location of AC1 using matrix 
representation127 and matrix functions that 
conform to IEEE 754: 
[AC1] = [AC0] - [C1C0]. 

D.3 Motivation for refinement as a constraint on system development 
Refinement has supported powerful reasoning in software development; success in its use for 
program construction leads to its usage in the development of safety-critical software-dependent 
systems [1]. Refinement (in the rigorous sense as mentioned in Section D.4) enables 
“verification by construction” that the original specification and initial constraints are satisfied [3]. 

This approach supports the concept that system properties can be verified analytically by 
abstracting the essential information and leaving out all details about the system, which are not 
needed but might render the analysis infeasible. The abstraction has to suit the analytical 
purpose. 

The enabling idea in the transformation from the abstract to the refined specification is that the 
verification performed on the abstract level remains valid for the refined specification. This idea 
can be applied to a sequence of refinement steps: Verification of properties successfully applied 
to abstractions also holds for their refinements. 

In the ideal state (enabling verification by construction), the final product would not have to be 
tested against the initial specification. Key constraints required in developing a system to enable 
this ideal are introduced next. To the extent that the ideal is not achieved through the 
refinement-based analytical verification approach, residual uncertainties would require 
complementary means of verification. 

Stepwise refinement serves as a process for making a sequence of design decisions that rules 
out unsafe choices or choices for which safety cannot be assured (e.g., because the 
technological basis does not exist or the organization does not have the capability). In other 
words, the design space is progressively reduced in a manner that progressively reduces the 
hazard space also. 

D.4 Mathematical underpinnings 
Refinement supports correctness notions in a rigorous way when it is used with mathematical 
underpinnings such as refinement calculi. Refinement calculi exist for practically all kinds of 
formalisms and programming notations in computer science and for a large number of system 
models. 

In a refinement calculus for refinement steps, a “chunk” of design activity is decomposed into 
elementary steps in such a way that the specification for the “chunk” is preserved [8]. 
                                                 
127 In this case, the square brackets [] represent a matrix. 
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Refinement calculi introduce a formal refinement relation on the set of specifications as well as 
rules to deduce and prove refinement types, forming a formal calculus. Moreover, refinement 
calculi often define a number of transformation rules for system specifications that are applied to 
produce refinements and that guarantee correctness by construction in the refinement process. 

D.4.1 Refinement as logical implication 
Logically, refinement corresponds to implication; the refined specification satisfies the original 
specification. 

If a refinement specification S0 is refined to specification S1, it connotes that specification S1 
expresses more detailed information than specification S0; the logical property formulated by 
specification S1 implies the logical property formulated by specification S0. 

Formal specifications are logical predicates on systems and thus we can use the concept of 
logical implication “⇐” to express a refinement relation: 

 S0 ⇐ S1 

Note that the arrow goes from S1 (the refinement) to S0 (the abstraction), expressing that each 
property expressed by S0 is implied by the property expressed by S1. 

The transformation from S0 to S1 is called a refinement step. Specification S1 is called a 
refinement of specification S0. Specification S0 and specification S1 are said be in the 
refinement relation. 

D.4.2 Useful properties of the refinement relation 
The refinement relation is a partial order on the semantics of specifications. The refinement 
relation is transitive, reflexive, and antisymmetric; it defines a partial ordering on the (semantics 
of) specifications of systems and their elements. 

The transitivity property is illustrated as follows: 

If specification S1 is a refinement of specification S0, expressed as 

S0 ⇐ S1, 

and S2 is a refinement of S1, expressed as 

S1 ⇐ S2, 

then we conclude that S2 is a refinement of S0: 

S0 ⇐ S2. 

D.4.3 Sequence of Refinement Steps 
In developing a system through the stepwise refinement technique, simple steps of refinement 
are put together into larger steps. To explain and comprehend the correctness of refinement 
steps of the form 

S ⇐ S', 

the differences between specifications in adjacent steps must not be too large and ,ust be 
comprehensible. For example, if 

S ⇐ S' 

is a large step, 
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then it is better to decompose it into a sequence of smaller intermediate steps: 

S ⇐ S1, 

S1 ⇐ S2, 

… 

Sk-1 ⇐ Sk, 

Sk ⇐ S'. 

These smaller steps guarantee that the larger step, 

S ⇐ S', 

is a correct refinement step based on the fact that the refinement relation is transitive. 

D.4.4 Refinement and Decomposition 
In a design step, a “hard-to-analyze” system, represented with its model M, is decomposed into 
a number of “easier-to-analyze” (model) elements M1, M2, …, Mk. 

D.4.4.1 Composing and Decomposing Interfaces 

Composition is an operation on syntactically compatible system interfaces; let [I  O] denote 
the set of interface behaviors; composition is defined by the operator 

⊗ : [I1  O1] × [I2  O2] → [I  O] 

The operator ⊗ induces a composition operation on specifications [9]. 

To express this step of decomposition formally we use the composition operator ⊗ for systems 
in such a way that 

 M = M1 ⊗ M2 ⊗ … ⊗ Mk 

This equation expresses both that M is the result of composing the elements M1, M2, … Mk and 
that M may be correctly decomposed into the elements M1, M2, … Mk. 

Following this scheme, a specification S is decomposed into a number of specifications S1, S2, 
… Sk of its system elements. Generalizing the composition to specifications we write 

  S1 ⊗ S2 ⊗ … ⊗ Sk 

for the specification of all the systems represented by M1 ⊗ M2 ⊗ … ⊗ Mk where the models of 
the elements M1, M2, … Mk fulfill the specifications S1, S2, … Sk respectively. 

Such a step of decomposition of a system specification into specifications of system elements is 
called a refinement step if 

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk 

holds. 

D.4.4.2 Compositionality of Refinement 
Compositionality of refinement guarantees, for systems composed of a set of elements, that 
refinements of the specifications of system elements guarantee refined system 
specifications [1][10][11][12]. In the literature, compositionality of refinement is sometimes also 
called modularity of refinement. 
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If we replace in a larger system an element that is required to fulfill specification A (and if for the 
correctness of the system this is all that is required), then replacing the element by one fulfilling 
specification B is correct and maintains the correctness, if such an element fulfilling 
specification B also fulfills specification A. Formally, given a specification S, a decomposition 
S1 ⊗ S2 ⊗ … ⊗ Sk which is also the refinement 

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk, 

and given refinements R1, R2 … Rk of the specification S1, S2 … Sk:  

If the refinement relation is compositional for composition S, we can conclude that: 

 S1 ⊗ S2 ⊗ … ⊗ Sk ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk 

and, by transitivity of refinement, 

 S ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk 

Compositional refinement also captures the idea of compatibility (replaceability) of a system or 
its elements. Consider a system given by a composition of elements, such that the system 
design is correct as long as the elements satisfy their respective specifications. Compositional 
refinement guarantees that the replacement of a specification of an element by its refinement 
yields a refined design. 

D.4.4.3 Example 
Figure 12 depicts an example of architectural refinement. The top-level system is represented 
by its model M; its behavior is represented by its specification S. The system model is 
decomposed into modeling elements M1, M2, and M3 and their respective behaviors are 
represented by S1, S2, and S3. If their combined behavior results in the behavior S and does not 
produce any behavior not specified in S, 

S ⇐ S1 ⊗ S2 ⊗ S3. 

Note that the refined system contains more information, in this case about the architectural 
design decomposing model M into three modeling elements M1, M2, and M3 specified by S1, 
S2, and S3. 
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Figure 12: Example of architectural refinement through decomposition. 
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APPENDIX E: Checklists to assist hazard recognition 
This appendix is a collection of checklists assimilated from a variety of sources such as [1], [2], 
and [3]. It is not an exhaustive coverage of hazard sources, categories, or groupings relevant to 
a nuclear power plant’s (NPP’s) digital safety system. The intent is to stimulate thought from 
different perspectives, leading to recognition of a hazard or a contributor to it. 

E.1 Categories of hazard origination 
Table 25 is adapted from Appendix D to National Aeronautics and Space Administration (NASA) 
Reference Publication 1358 [1] and is organized by categories of hazard origination or source. 
For each category, Table 25 identifies a variety of effects which might lead to loss. 
 
Table 25: Some categories of hazard origination 
Category of hazard origination Effect which might lead to loss 
Acceleration/Deceleration/Gravity Inadvertent motion 

Loose object translation 
Impacts 
Failing objects 
Fragments/missiles 
Sloshing liquids 
Slip/trip 
Falls 

Chemical/Water Contamination System cross-connection 
Leaks/spills 
Vessel/pipe/conduit rupture 
Backflow/siphon effect 

Common Causes Utility outages 
Moisture/humidity 
Temperature extreme 
Seismic disturbance/impact 
Vibration 
Flooding 
Dust/dirt 
Faulty calibration 
Fire 
Single-operator coupling 
Location 
Radiation 
Wearing out 
Maintenance error 
Result of activity of organisms: 
• Animals, such as: 

o Vermin 
o Varmints 
o Mud daubers 

• Trees 
o Invasion of roots  
o Congestion from leaves. 



 

RIL-1101 Page 122 
 

Category of hazard origination Effect which might lead to loss 
Contingencies (Emergency Response by 
System/Operators to “Unusual” Events) 

“Hard” shutdown/failures 
Freezing 
Fire 
Windstorm 
Hailstorm 
Utility outrages 
Flooding 
Earthquake 
Snow/ice load 

Control Systems Power outage 
Interfaces (EMI/RFI) 
Moisture 
Sneak circuit 
Sneak software 
Lighting strike 
Grounding failure 
Inadvertent activation 

Electrical Shock 
Burns 
Overheating 
Ignition of combustibles 
Inadvertent activation 
Power outage 
Distribution backfeed 
Unsafe failure to operate 
Explosion/electrical (electrostatic) 
Explosion/electrical (arc) 

Mechanical Sharp edges/points 
Rotating equipment 
Reciprocating equipment 
Pinch points 
Lifting weights 
Stability/topping potential 
Ejected parts/fragments 
Crushing surfaces 

Pneumatic/Hydraulic Pressure Overpressurization 
Pipe/vessel/duct rupture 
Implosion 
Mislocated relief valve 
Dynamic pressure loading 
Relief pressure improperly set 
Backflow 
Crossflow 
Hydraulic ram 
Inadvertent release 
Miscalibrated relief device 
Blown objects 
Pipe/hose whip 
Blast 

Temperature Extremes Heat source/sink 
Hot/cold surface burns 
Pressure evaluation 
Confined gas/liquid 
Elevated flammability 
Elevated volatility 
Elevated reactivity 
Freezing 
Humidity/moisture 
Reduced reliability 
Altered structural properties (e.g., embrittlement) 
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Category of hazard origination Effect which might lead to loss 
Radiation (Ionizing) Alpha 

Beta 
Neutron 
Gamma 
X-Ray 

Radiation (Non-Ionizing) Laser 
Infrared 
Microwave 
Ultraviolet 

Fire/Flammability—Presence of: Fuel 
Ignition Source 
Oxidizer 
Propellant 

Explosive (Initiators) Heat 
Friction 
Impact/shock 
Vibration 
Electrostatic discharge 
Chemical contamination 
Lightning 
Welding (stray current/sparks) 

Explosives (Effects) Mass fire 
Blast overpressure 
Thrown fragments 
Seismic ground wave 
Meteorological reinforcement 

Explosive (Sensitizes) Heat/cold 
Vibration 
Impact/shock 
Low humidity 
Chemical contamination 

Explosives (Conditions) Explosive propellant present 
Explosive gas present 
Explosive liquid present 
Explosive vapor present 
Explosive dust present 

Leaks/Spills (Material Conditions) Liquid/cryogens 
Gases/vapors 
Dusts—irritating 
Radiation sources 
Flammable 
Toxic 
Reactive 
Corrosive 
Slippery 
Odorous 
Pathogenic 
Asphyxiating 
Flooding 
Runoff 
Vapor propagation 
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Category of hazard origination Effect which might lead to loss 
Physiological (see “Ergonomic”) Temperature extremes 

Nuisance dusts/odors 
Barometric pressure extremes 
Fatigue 
Lifted weights 
Noise 
Vibration (Raynaud’s syndrome) 
Mutagens 
Asphyxiants 
Allergens 
Pathogens 
Radiation (see “Radiation”) 
Cryogens 
Carcinogens 
Teratogens 
Toxins 
Irritants 

Human Factors (see “Ergonomic”) Operator error 
Inadvertent operation 
Failure to operate 
Operation too early or late 
Operation out of sequence 
Right operation but wrong control 
Operated too long 
Operated too briefly 

Ergonomic (see “Human Factors”) Fatigue 
Inaccessibility 
Nonexistent/inadequate “kill” switches 
Glare 
Inadequate control/readout differentiation 
Inappropriate control/readout labeling 
Faulty workstation design 
Inadequate/improper illumination 

Utility Outages: 
• Unannounced; unscheduled 
• Sudden 
• Unexpected; unforeseen 

Electricity 
Steam 
Heating/cooling 
Ventilation 
Air conditioning 
Compressed air/gas 
Lubricant drains/sumps 
Fuel 
Exhaust 

Mission Phasing Transport 
Delivery 
Installation 
Calibration 
Checkout 
Shakedown 
Activation 
Standard start 
Emergency start 
Normal operation 
Load change 
Coupling/uncoupling 
Stressed operation 
Standard shutdown 
Shutdown emergency 
Diagnosis/troubleshooting 
Maintenance 
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E.2 Checklist for hazard sources 
Following is a checklist from [2] of some general categories of hazard origination or source. 
Note that some of the factors are similar to those in Table 25, but are organized differently. 

1. Acceleration 

2. Contamination 

3. Corrosion 

4. Chemical dissociation 

5. Electrical 
a. Shock 
b. Thermal (corresponds to “Electrical—Overheating” in Table 25) 
c. Inadvertent activation 
d. Power-source failure (corresponds to “Electrical—Power outage” in Table 25) 
e. Electromagnetic radiation 

6. Explosion 

7. Fire 

8. Heat and temperature 
a. High temperature 
b. Low temperature 
c. Temperature variations 

9. Leakage 

10. Moisture 
a. High humidity 
b. Low humidity 

11. Oxidation 

12. Pressure 
a. High 
b. Low 
c. Rapid change 

13. Radiation 
a. Thermal 
b. Electromagnetic 
c. Ionizing 
d. Ultraviolet 

14. Chemical replacement 

15. Shock (mechanical) 

16. Stress concentrations 

17. Stress reveals 

18. Structural damage or failure 

19. Toxicity 

20. Vibration and noise 
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21. Weather and environment 

Following is a checklist of some categories of energy sources for hazards, assimilated from a 
variety of sources such as [2]: 

1. Fuels 
2. Propellants 
3. Initiators 
4. Explosive charges 
5. Charged electrical capacitors 
6. Storage batteries 
7. Static electrical charges 
8. Pressure containers 
9. Spring-loaded devices 
10. Suspension systems 
11. Gas generators 
12. Electrical generators 
13. Radio-frequency sources 
14. Radioactive energy sources 
15. Failing objects 
16. Catapulted objects 
17. Heating devices 
18. Pumps, blowers, and fans 
19. Rotating machinery 
20. Actuating devices 
21. Nuclear 

E.3 Checklist of hazard sources in semiconductor manufacturing 
Table 26 is a set of examples from the semiconductor manufacturing industry [3], organized by 
categories of sources of hazards and the corresponding potential loss or effect leading to 
potential loss. 
Table 26: Checklist of hazard sources in semiconductor manufacturing equipment 
Categories of hazard sources Potential loss or effect which might lead to loss 
Chemical Energy 
Chemical disassociation or replacement of fuels, 

oxidizers, explosives, organic materials, or compounds 

Fire 
Explosion 
Non-explosive exothermic reaction 
Material degradation 
Toxic gas production 
Corrosion fraction production 

Contamination 
Producing or introducing contaminants to surfaces, 

orifices, filters, etc. 

Clogging or blocking components 
Deterioration of fluids 
Degradation of performance sensors or operating 

components 
Electrical Energy 
System or component potential energy release or failure 

(includes shock, thermal, and static) 

Electrocution/involuntary personnel reaction 
Personnel burns 
Ignition of combustibles 
Equipment burnout 
Inadvertent activation of equipment 
Release of holding devices 
Interruption of communications (facility interface) 
Electrical short-circuiting 



 

RIL-1101 Page 127 
 

Categories of hazard sources Potential loss or effect which might lead to loss 
Human Hazards 
Hazards to perception (inadequate control/display 

identification), dexterity (inaccessible control location), 
life support, and error probability (inadequate data for 
decisionmaking). 

 
Hazardous conditions caused by position (hazardous 

location/height), equipment (inadequate visual/audible 
warnings or heavy lifting), or other elements that could 
cause injury to personnel. 

Personnel injury: 
Skin abrasion, cuts, bruises, burns, falls, etc. 
Muscle/bone damage 
Sensory degradation or loss 

 
Death 
 
Equipment damage by improper operation/handling might 
also occur 

Kinetic/Mechanical Energy (Acceleration) 
System/component linear or rotary motion. 
Change in velocity or impact energy of vehicles, 

components, or fluids. 

Impact 
Disintegration of rotating components 
Displacement of parts or piping 
Seating or unseating of valves or electrical contact 
Detonation of shock-sensitive explosives 
Disruption of metering equipment 
Friction between moving surfaces 

Material Deformation 
Degradation of material because of an external catalyst 

(e.g., corrosion, aging, embrittlement, fatigue, etc.). 

Change in physical or chemical properties: corrosion, 
aging, embrittlement, oxidation, etc. 

Structural failure 
Delamination of layered material 
Breakdown of electrical insulation 

Natural Environment 
Conditions including lighting, wind, flood, temperature 

extremes, pressure, gravity, humidity, etc. 

Structural damage from wind 
Equipment damage 
Personnel injury 

Pressure 
Potential energy of a system or component (e.g., a fluid 

system or air system), including high, low, or changing 
pressure. 

Blast/fragmentation from container overpressure rupture 
Line/hose whipping 
Container implosion 
System leaks 
Aero-embolism, bends, choking, or shock 
Uncontrolled pressure changes in air/fluid systems 

Radiation 
Conditions involving electromagnetic, ionizing, thermal, 

or ultraviolet radiation (including that from lasers and 
optical fibers). 

Uncontrolled initiation of safety control systems and 
interlocks 

Electronic equipment interference 
Human tissue damage 
Charring of organic material 
Decomposition of chlorinated hydrocarbons into toxic 

gases 
Fuel ignition 

Thermal 
High, low, or changing temperature 

Ignition of combustibles 
Initiation of other reactions 
Expansion/contraction of solids or fluids 
Liquid compound stratification 

Toxicants 
Inhalation or ingestion of substances by personnel 

Damage to, irritation of, or other effects on: 
Respiratory system 
Circulatory system 
Organs of the body 
Skin 
Nervous system 

Vibration/Sound 
System/component-produced energy 

Material failure 
Pressure/shock-wave effects 
Loosening of parts 
Chattering of valves or contacts 
Interference with verbal communications 
Degradation or failure of displays 
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E.4 Hazard sources in the physical environment of a digital safety system 
Disruption in or emissions from the environment or physical conditions in the environment might 
degrade a safety function of the analyzed digital instrumentation and control (DI&C) system in 
an NPP in any of these ways: 

1. Water in unwanted space 

2. Transfer of unwanted energy in various forms; for example: 
2.1. Fire 
2.2. Lightning 
2.3. Heat 
2.4. Light 
2.5. Sound 
2.6. Vibration 
2.7. Radiation 
2.8. Shock 
2.9. Seismic event or effect 
2.10. Tsunami 
2.11. Flooding 
2.12. Electrostatic discharge 
2.13. Electromagnetic interference, causing spurious signal or signal change. 
2.14. Electromagnetic radiation; for example: 

2.14.1. Pulse 
2.14.2. Sunspot or solar flare 

3. Interruption of services (primary, secondary, or other forms of backup); for example: 
3.1. Electric power supply 

4. Disturbance in services, propagating to a disturbance in a main signal; for example: 
4.1. Electric power supply 
4.2. Service water [4] 
4.3. Service air 

5. Intrusions through breaches of isolation barriers; for example: 
5.1. Cable penetration 
5.2. Other duct penetration 

6. Adverse conditions in temperature, pressure, or humidity/moisture; for example: 
6.1. Too high 
6.2. Too low 
6.3. Rapid changes 

7. Disturbance in incoming signals 

8. Misbehaving signals (data or commands); for example: 
8.1. Byzantine behavior 
8.2. Behaving like a “babbling idiot” in a connected network 

9. Deprivation of resources; for example: 
9.1. Overloaded communication bus 
9.2. Resource locked up by other “users” of those resources 

Note: Items 8 and 9 are contributed through “logical” rather than physical sources in the 
environment. 
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E.5 Digital safety system contribution to hazards affecting its environment 
Emissions or outputs from or behavior of the DI&C system having an effect on its environment 
might affect safety adversely in any of these ways: 

1. Emission of energy in various forms; for example: 
1.1. Heat 
1.2. Light 
1.3. Sound 
1.4. Vibration 
1.5. Electromagnetic radiation 
1.6. Electrostatic discharge 

2. Other unwanted, unplanned effluents; for example, those leading to 
2.1. Toxicity 
2.2. Inflammability 

3. Output of signals (data or commands); for example: 
3.1. Byzantine behavior 
3.2. Behaving like a “babbling idiot” in a connected network 

4. Excessive128 load or demand on resources; for example: 
4.1. Electric power overload caused by a short circuit 
4.2. Communication bus overload 
4.3. Locking up resources to the exclusion of other “users” of those resources. 

Note: Items 3, 4.2, and 4.3 are “logical” rather than physical contributory causes. 

E.6 References for Appendix E 
[1] Goldberg, B.E., et al., “System Engineering ‘Toolbox’ for Design-Oriented Engineers,” 

NASA Reference Publication 1358, National Aeronautics and Space Administration, 
Marshall Space Flight Center, AL, December 1994, available at 
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950012517.pdf. 

[2] Ericson II, C.A., Hazard Analysis Techniques for System Safety, Hoboken, NJ: John 
Wiley & Sons, August 2005. 

[3] International SEMATECH, Inc., “Hazards Analysis Guide: A Reference Manual for 
Analyzing Safety Hazards on Semiconductor Manufacturing Equipment,” Technology 
Transfer # 99113846A-ENG, Austin, TX, November 30, 1999, available at 
http://www.sematech.org/docubase/document/3846aeng.pdf. 

[4] NRO Office of Inspection & Enforcement, PNO-77-146_8-19-77, 146th Preliminary Notice 
of Event or Occurance for 1977, dated August 19, 1977, Legacy (microfiche) ADAMS 
Accession Number 9809170110, Microform Address A5119:285-A5119:285. 

  

                                                 
128 Excessive: Disruptive by exceeding limit declared or established in design. 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950012517.pdf
http://www.sematech.org/docubase/document/3846aeng.pdf
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APPENDIX F: Organizational Qualities To Support Safety 
Author: Dr. Dorothy Andreas, Pepperdine University 

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas 

Integrative editing by Sushil Birla 

This appendix draws on knowledge from the social sciences for the purpose of informing the 
evaluation of hazard analysis of a digital safety system for a nuclear power plant (NPP). 
Literature search in the social sciences did not yield any results specific to the context of 
engineering critical systems such as a digital safety system for an NPP. In the absence of 
context-specific research, this appendix assimilates129 information from broader fields of 
applicable research in support of the premise that collective mindfulness (Section F.5) within the 
organization is an essential factor for (a) reducing the hazard space in engineering a digital 
safety system for an NPP and (b) conducting the associated hazard analysis. Most of the 
scholarship is concerned with operations of technologically and organizationally intricate 
systems (such as those in nuclear power plants, aircraft carriers, aviation, the petroleum 
industry, occupational safety, and healthcare) ([1], [2], [3] through [5], [6], and [7]). The literature 
refers to them as "high-reliability organizations" (HROs), where an HRO is defined as an 
organization that operates (works with) hazardous (hazard-contributing) technologies without 
having this operation lead to a catastrophe (loss of safety). 

Swanson et al. [8], theorizing about the application of HRO principles (Section F.1) to design of 
IT systems, is the only research that comes close to the context of RIL-1101 or the engineering 
of digital safety systems. Similarly, in this appendix we map the knowledge from the social 
sciences to the RIL-1101 context as follows: 

Just as, in the operational environment, a “high-reliability130 organization” operates hazardous 
technologies without leading to catastrophe [9], in the engineering environment, a high-quality 
engineering organization (HQEO) develops and maintains technological systems without 
entailing associated hazards. 

The subsequent sections describe specific behaviors and processes to develop collective 
mindfulness and discuss these in the context of accountability and standardization. 
Organizations can measure all of the factors described in the subsequent sections and use this 
information as one piece of evidence that a hazard analysis was performed using best 
communication practices and sound principles from the social sciences. 

HQEOs, just like HROs, work hard to address intricacies within technical systems using 
processes that cultivate “collective mindfulness.” Collective mindfulness is a set of stable 
cognitive processes that allow a group to develop sophisticated mental models that help to 
“improve hazard identification and evaluation” ([9][10]).131 These organizations resist patterns of 
habitual132 thinking and communicating that might lead them to miss safety-related information 
(e.g., contributors to hazards). They intentionally strengthen their collective ability to pay 
attention to new information to determine how the information provides insight into the 
                                                 
129 Assimilation includes mapping certain terms to the context of RIL-1101. 
130 “Reliability” in this context does not have the same definition as used in fault-tolerant engineered 
systems. To avoid the confusion, Appendix F uses the term “high-quality engineering organization.” 
131 “Hazard identification and evaluation” is implicit in the expression, “risk detection, assessment, and 
management” in the cited references. 
132 Interpreting new information through an old reference frame—the traditional belief system. 

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas
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intricacies of the system and to help the organization avoid a hazardous condition133 and 
prevent the consequential loss (e.g., degradation of a safety function). Organizational culture is 
a contributing factor to individuals’ abilities to develop collective mindfulness. There are also 
specific communication behaviors that enable organizations to develop collective mindfulness. 

F.1 Five Principles 
Following are the five organizing principles for high-quality134 processes ([6], [9], [10], and [11]): 

1. Preoccupation with hazard135 identification: Treat every piece of information as a potential 
symptom that something could be wrong with the system. 

2. Reluctance to accept simplistic136 explanations and models: Always hold current mental 
models in question with a persistent goal to create more complete and nuanced137 
explanations and models of the system. 

3. Sensitivity to operations, including situational awareness of the (current state of the) system: 
Be able to notice anomalies,138 track them, and resolve them. 

4. Commitment to resilience: Learn from mistakes, correcting one’s perceptions to represent 
reality139 well enough to identify (contributory) hazards, in order to detect, contain, and 
recover from mistakes.140 

4.1. Be able to respond to unanticipated conditions (outside the boundary of the 
organization’s deterministic processes) without compromising its safety goal.141 

4.2. Be able to learn and grow from previous episodes of resilient action. 

5. Deference to expertise: Cultivate diversity; delegate to (that is, empower) people who are 
closer to the situation and can recognize more subtle contributors to a hazard in intricate 
environments, and assimilate information from such people’s diverse perspectives. 

An HQEO practices these principles in its everyday activities. However, there are ways to 
measure an organization’s ability to follow these principles with surveys. A survey measure of 
the five principles is in [9] and [10]. 

                                                 
133 The reference uses the terms “error” and “failure” for this. 
134 The references [6][9][10] use the term, “reliability” 
135 The references [6][9][10] use the term “failure.” 
136 In the RIL-1101 context, this means “not adequately representative of reality; missing (contributory) 
hazards.” 
137 In the RIL-1101 context, this means “reflecting subtle details that enable (contributory) hazard 
identification.” 
138 In the RIL-1101 context, this maps into “(contributory) hazards.” 
139 The references [6][9][10] use the term “complicating” to imply a mental model that reflects reality more 
accurately. 
140 The references [6][9][10] use the terms “failure” and “error” for which “unrecognized hazard” is the 
corresponding concept in RIL-1101. Its effect may be an “unwanted loss” for which, in the context of 
organizational processes, the cause is traced to some mistake by some human. 
141 The references [6][9][10] use the expression “absorb strain and preserve functioning despite presence 
of adversity.” 
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F.2 Accountability, Standardization, and Adaptation 
Many assumptions associated with safety management are based in traditional “scientific” 
management, inheriting the following characteristics: 

1. A standardization142 of work process, output, skills, and organizational norms (e.g., safety 
culture). 

2. A strict separation of planning143 and operations processes. 

3. The use of “scientific” measurement to develop the standards and to detect flaws in the 
system [24]. 

“Scientific” management is based on the premise that standardized processes in normal 
operations control output and prevent mistakes [24][12]. This premise is related to master 
premises that efficiency and predictability are desirable performance characteristics144 of 
organizational processes [12][13]. In the context of safety management, it assumes that 
managers can control employee behavior and that mishaps result from performance shortfalls, 
which are the product of failing to control employee behavior (e.g., “mistakes”) [24][13]. Thos 
assumption does not make adequate provision145 for unanticipated conditions and limits the 
organization’s ability to recognize (contributory) hazards [24][9][10][13][14]. 

Likewise, the desire to establish a clear hierarchical “command and control” tree derives from 
this assumption [12][15]. Decades of research about organizations, including the nuclear 
industry, clearly document that the very nature of bureaucracy in organizations diffuses 
accountability [12]. Hierarchical “command and control” is viewed as a strength, because 
bureaucracy’s prescriptive “deterministic” processes enable accomplishment of organizational 
tasks and goals without full dependence on an individual thinking for adjusting to 
situation-specific unanticipated conditions [12]. Thus, individuals often base decisions on 
assumptions underlying the “deterministic” processes that are not always made explicit [12]. 
However, as noted in H-culture-9 in Table 3, an overly rigid “command and control” organization 
structure can increase the hazard space because the implicit assumptions and premises might 
not hold. The top-down allocation of roles, responsibilities and performance metrics is based on 
a deterministic process model, and does not make adequate provision for bottom-up 
observation and feedback of real conditions and adaptation to them. 

Organizational research asserts that the nature of bureaucracy creates a powerful force to 
diffuse accountability throughout the organization [12][15]. In terms of ethics, some researchers 
lament this organizational force and call for organizations, in general, to become mindful of this 
tendency and counteract it whenever possible [12]. But rather than tracing all decisions through 
individual accountability, they suggest that organizational members question assumptions and 
premises that pervade the organizational culture [12]. The Toulmin model [16] introduced in 
Section C.3.3 of Appendix C is one technique by which organizational members can question 
premises and assumptions as they relate to evidence and claims about hazards or hazard 
control. Conversations that seek to make these elements of arguments transparent can help 
counteract the diffusion of accountability in bureaucracy. Of course, the intricacy of these 
conversations and the amount of information that must be considered in hazard analysis can 
                                                 
142 Which includes top-down decomposition and allocation of responsibilities along the organizational 
(command and control) structure, down to the individual. 
143 Rigid hierarchical (top-down) plans limit local autonomy during execution or operation. 
144 The references use the term “outcomes.” 
145 For example, by establishing an organizational architecture for collective mindfulness. 
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make it difficult to keep a record of deliberations, decisions, and rationale. 
Knowledge-management tools such as dialogue mapping can help organizations keep track of 
deliberations, decisions, and rationale and to hyperlink the rationale to supporting information 
and documents ([17] through [19]). 

Even though the use of Toulmin’s argumentation model can help counteract diffusion of 
authority in organizations, a caveat is in order in the context of complex, high-risk technology. 
One of the main goals of Perrow’s Theory of Normal Accidents [20] is to raise awareness of the 
faulty assumption that accidents result from a lapse of “scientific” management to control 
employees—often referred to as “human error” [20][22]. In the context of complex, high-risk 
technologies, it is worth considering his argument that the nature of complex technical systems 
makes it extraordinarily difficult for standardization of organizational procedures to anticipate all 
possible combinations of mistakes. An HQEO takes this issue seriously by developing collective 
mindfulness in order to create requisite diversity and independence in the organizational system 
to recognize the complexity of the technical system [3][9][10]. Requisite variety is the variation in 
frames of reference and knowledge that makes the organization capable of recognizing and 
addressing hazards [6]. In the case of many organizational mishaps, the paradox is that the 
standardization of process that was designed to control mistakes in fact minimized the 
organizations’ ability to develop collective mindfulness that would prevent the mishap [14][21] 
[22] [23]. Alternately, HRO-relevant research in nuclear power plants, aircraft carriers, aviation, 
and the petroleum industry consistently demonstrates that these organizations centralize and 
standardize procedures while also building collective mindfulness about when to decentralize146 
and adapt the procedures ([9], [10], and [12]). It is also important to note that too much 
emphasis on the separation of planning and execution can lower the organization’s collective 
mindfulness because it lowers sensitivity to the context and to the system [12][23] [24][25]. 

Thus, the desire to develop accountability and standardization within organizations must be 
accomplished without minimizing the organizations’ ability to develop collective mindfulness that 
allows them to recognize and prevent (contribution to) hazards. The subsequent sections 
discuss the relationship between organizational culture and decisional premises (Section F.3), 
the role of communication in developing collective mindfulness and following Toulmin’s model of 
argumentation [16] (Section F.4), and the relationship between professional identification and 
collective mindfulness and competence (Section F.5). Additionally, each section cites tools and 
techniques for measuring the organizational and communication factors. 

F.3 Organizational culture and decisional premises 
The organization’s culture can create values and decision premises that guide individual 
members’ cognition, communication, and processes in a manner that increases safety 
[23][24][25][26][27][28]. Organizational culture is a complex concept, and because of its 
complexity, it is difficult to define conceptually and difficult to measure [13][26][28][30]. Following 
is the most commonly cited definition of organizational culture: “Organizational culture is 
understood to be deeply rooted assumptions about human nature, human activities, and social 
relationship shared by members of an organization and their expression in values, behavioral 
patterns, and artifacts found within the organization” [25]. 

In the nuclear industry (and others), this concept is often called “safety culture,” defined by the 
International Atomic Energy Agency (IAEA) as “that assembly of characteristics and attitudes in 
organizations and individuals, which establishes that, as an overriding priority, nuclear plant 
safety issues receive the attention warranted by their significance” [24]. Thus, one important 
                                                 
146 Delegate and distribute control; provide the autonomy (empower) to adapt, learn, and give feedback. 
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way to think about the role of organizational culture in the process of hazard analysis is that 
members of the organization would be motivated by their value of safety to pay close attention 
to hazard-related information. 

In addition to establishing core values of an organization, the culture carries premises and 
assumptions that often become the basis for decisions and evaluation of information in the 
organization. It is the HRO’s established premises that allow it to have centralized and 
standardized processes while at the same time allowing members interpretive flexibility to 
recognize new information and adapt work processes accordingly ([1] and [23]). 

The discipline of organizational culture derives from an anthropological tradition of studying 
culture and organizations. It examines patterns of meaning, values, and frames of reference that 
are shared among members of a community. It considers culture to be a complex whole of 
knowledge, beliefs, ethics, and customs that is both created and lived within members of a 
community. These cultural frames of reference are the lenses through which community 
members interpret and evaluate information and behavior. Given the complexity and dynamic 
nature of organizational culture, it is a very difficult phenomenon to measure. It is best evaluated 
with a combination of qualitative and quantitative measures. There are many 3-part frameworks 
to measure organizational culture. One framework suggests that it is a dynamic interrelationship 
between individual characteristics, behavior, and the environment [31]. A similar model 
suggests that individual behavior is influenced by the triad of organizational structure, 
organizational processes, and organizational culture [27]. Qualitative measures might include 
themes and patterns from a series of employee interviews, thematic analysis of focus groups, 
detailed observation of the work environment, and audits of organizational documents. Another 
approach uses rubrics to assess five levels of safety culture: 

1. Organization does not care about safety, 
2. Organization increases safety after an accident, 
3. Organization uses systems and procedures to prevent hazards, 
4. (Organization tries to anticipate safety problems, and 
5. Normalization of safety values within the organization culture (akin to the principles of highly 

reliable organizations). 

Even though these measures of safety provide a sense of the values and interpretive frames 
within a community, it is important to recognize that any measure only captures a moment in 
time and does not tell the entire story. 

There have been many efforts to develop quantitative measures of safety culture. These efforts 
are generally considered to be measuring “safety climate.” Safety climate is an aggregation of 
individual attitudes about safety. Thus, safety climate measured in surveys is a manifestation of 
some aspect of the organizational safety culture. Even with this qualification of a survey 
approach, many scholars question the validity of these surveys and suggest they are simply 
measuring employee satisfaction with the organization and their supervisors [27]. Thus, reports 
of survey measures should be evaluated carefully. 

One approach to measuring safety culture suggests that the organization should carefully 
consider what it really wants to measure [32].  

1. One question inquires about the organizational culture as an attribute of the organization—
as something the organization has. Measurement methods appropriate to this question 
include observation and audits.  

2. A second question asks how the organizational culture impacts individual attitudes about 
safety. Measurement methods for the second question include surveys and observation.  
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3. A third question inquires about the organizational climate as seen through the eyes of 
employees, contractors, and external audiences. Measurement methods for the third 
question include interviews and surveys. This approach suggests that technique of 
measuring organizational safety culture should be based on the reason (purpose) for 
measuring it. 

See [25] for opinions about incident reporting, managers, prioritization of worker safety, work 
procedures, work situation and stress, competence and training, communication and 
cooperation, upper management, lines of responsibility, and perceptions of vocation (in this 
case, seamanship). 

See [32] for attitudes toward management commitment to safety, priority of safety, 
communication, safety rules, supportive environment, involvement, personal priorities and need 
for safety, personal appreciation of risk, and nature of work. 

F.4 Communication for collective mindfulness 
Quality of hazard analysis is affected by the quality of interaction among the involved people. 
Good interaction quality depends on the following four factors: 

1. Individual communication competence (Section F.4.1). 
2. Participatory communication climate (Section F.4.2) 
3. Cross-disciplinary or interdisciplinary competence (Section F.4.3) 
4. Prevention of groupthink (Section F.4.4). 

F.4.1 About Becoming a Competent Communicator 
In general, the field of Communication Studies has given considerable thought to the qualities of 
a competent communicator. Even though there are many lively debates about this topic, most 
scholars accept the fundamental assumption that competent communicators effectively manage 
self-image, relationships and tasks as follows [33]: 

1. Present a competent and credible image of self. 
2. Escalate, maintain, or terminate relationships. 
3. Accomplish instrumental tasks.  

The research about group communication and interdisciplinary communication indicates that 
sole focus on tasks, ignoring self-image and relationships, increases the hazard space and 
prevents organizations from developing collective mindfulness. Thus, the assumption that 
competent communicators manage the triple {self-image; relationships; tasks} pervades the 
subsequent discussions. 

One commonly cited model of communication competence identifies six factors of 
communication competence, measurable with a survey [33]: 

1. Ability to adapt communication to the context. 

2. Ability to stay cognitively involved in the conversation and to demonstrate involvement with 
appropriate verbal and nonverbal cues. 

3. Ability to manage a conversation effectively through turn-taking, questioning, intonation, 
topic shifts, extensions etc. 

4. Ability to understand a person’s perspective and emotions. 

5. Ability to achieve the goal of the conversation. 
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6. Ability to uphold social norms and expectations for what counts as appropriate for a given 
situation. 

F.4.2 Participatory Communication Climate 
A participatory communication climate at an organization contributes to the organization’s ability 
to follow the five principles stated in Section F.1 and develop collective mindfulness. There are 
four characteristics of participatory communication climate, measured with a survey published 
in [34], that contribute to collective mindfulness:  

1. Individuals have voice to express ideas and concerns. 
2. The organization has an open communication climate. 
3. Individuals have easy access to relevant information. 
4. Individuals engage in continuous and ongoing learning. 

F.4.3 Collective Communication Competence and Diversity 
Communication among individuals from various professional and disciplinary backgrounds has 
the potential to increase intellectual diversity and this is a factor that contributes to collective 
mindfulness [9][10][34]. Unfortunately, interdisciplinary communication is also challenging. 

In particular, the following communication activities are contribute to hazardous conditions, 
because they limit organizations’ ability to develop interdisciplinary competence [35]: 

1. Expressions of negative humor and sarcasm. 
2. Debating with team members about whose expertise is more important and jockeying for 

control and power. 
3. Expressing boredom through verbal and nonverbal messages. 

These behaviors might seem minutiae, but in excess might limit an organization’s ability to seek 
and use intellectual diversity for recognizing hazards. 

Teams can increase intellectual diversity by developing collective competence in 
interdisciplinary group communication. The following behaviors increase collective 
communication competence [35]: 

1. Building trusting relationships. 

2. Reflectively talking about the task when members spend time coordinating their 
understanding of what to do (this is related to Steps #1 and #2 of group conversational 
quality in Section F.4.4). 

3. Negotiating meaning by discussing different uses of language that arise from disciplinary 
and professional differences (this would be especially important as nuclear engineers 
collaborate with software engineers). 

4. Demonstrating presence through active listening behaviors. 

5. Informal communication, such as shared humor, that builds positive relationships and a 
sense of shared meaning. 

Through these behaviors, individuals can manage the triple {self-image; relationships; tasks} 
mentioned in Section F.4.1. 



 

RIL-1101 Page 137 
 

F.4.4 Conversation Quality and Deference to Expertise 
Groupthink is an organizational phenomenon that leads to poor-quality decisions and increases 
the hazard space [36]. Groupthink occurs when group members feel an undesirably strong 
sense of cohesiveness. 

F.4.4.1 Characteristics of Groupthink 
Following are some of the identified characteristics of groupthink [36][37]: 

1. Critical thinking is not encouraged or rewarded. 
2. Members of the group are so cohesive that they believe they can do no wrong. 
3. Members are too focused on justifying their own actions. 
4. Members often believe that they have reached a true consensus. 
5. Members are too concerned with reinforcing the leader’s beliefs and attitudes. 

Groupthink is a contributory hazard because it limits the organization’s ability to develop 
collective mindfulness. In the context of hazard analysis of digital safety systems, it can diminish 
the organization’s ability to be deferent to expertise across the many relevant contexts. 

F.4.4.2 Countermeasures to Prevent Groupthink 
In order to counter the possibility of groupthink, groups can develop quality conversations that 
lead to high-quality decisions (or, in the context of RIL-1101, high-quality hazard analysis of 
digital instrumentation and controls). 

Five conversational acts147 that can improve conversational quality for hazard analysis have 
been identified ([38] through [40]): 

1. Carefully gather information to identify a hazard and analyze the information in a way that 
results in a clearly defined hazard. 

2. Set criteria for the quality of the decision about this hazard. Examples might include: 

2.1. Make premises and assumptions explicit [41]; 

2.2. Prevent the diffusion of accountability in the organization (see Section F.2); and 

2.3. Measure the group’s conversational quality using the Competent Group Communicator 
Scale [37]. 

3. Identify factors to reduce the hazard space and seek a range of constraint alternatives. 

4. Critically evaluate the identified hazard (from act 1) and the alternatives to reduce the 
hazard space (from act 3). 

5. Select the best course of action to pursue in order to avoid, eliminate, or otherwise control 
the hazard; remain open to new information; and be willing to change course as needed. 

F.5 Collective mindfulness and competence 
Survey measures of collective mindfulness are in [34] and [42]. 

                                                 
147 These five conversational acts have been modified to adjust them to the context of hazard analysis. In 
the research, the five acts contribute to a high-quality decision: (1) define the problem, (2) set criteria for a 
solution, (3) propose possible solutions, (4) critically evaluate proposals, and (5) select the best proposal. 
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APPENDIX G: An Example Case Study 
This case study illustrates that much can be learned from a single event to prevent or avoid a 
broader range of mishaps. When a specific mishap is examined for its causes (contributory 
hazards), pre-existing knowledge of cause-and-effect relationships can be used as the basis for 
generalizing from the specific contributory occurrences to more general contributory hazards. 

The concept of generalization has been used in a systems engineering process in which a set of 
scenarios are used (in addition to general requirements) to imply and represent many similar 
situations, conditions, and cases; these scenarios drive the engineering of the system. The 
resulting system not only satisfies the requirements explicit in the scenarios, but also many 
other implied scenarios. 

Experts [1] in such generalization have identified two types of reasoning processes, “abduction” 
and “induction.” 

G.1 Ft. Calhoun Event 
The following information is based on [2][3][4]. 

The plant was shut down on April 9, 2011, for a refueling outage. The outage was extended 
because of flooding along the Missouri River. Then an electrical fire on June 7, 2011, led to the 
declaration of an “Alert” and caused further restart complications. 

The fire resulted in the loss of spent fuel pool cooling capability for a brief time and caused 
significant unexpected system interactions. 

The Alert caused by the (electrical circuit) breaker fire resulted from inadequate design [4], 
which resulted from inadequate requirements specification. Figure 13 illustrates the dependency 
relationships. The bottom two blocks illustrate a generalization from the specific occurrence at 
Ft. Calhoun. In this example, the deficiency in the component interface specification was not 
identified during validation or hazard analysis activities. 

Hazard analysis activities are relied on to demonstrate that key systems will be able to perform 
their safety functions under a variety of challenging accident conditions such as earthquakes, 
loss-of-coolant accidents, high radiation fields, seismic events, etc. The hazardous behavior is 
generalized and shown in the block in the upper right corner of Figure 13. 

To extend the generalization, among the known causes of “deficient designs,” the leading cause 
is “deficient requirements.” In the context of RIL-1101, “deficient requirements including 
constraints” result from inadequate HA; for example: 

• Inadequate understanding of contributory hazards, which were being implicitly avoided 
through the silver plated interface between the bus bar and the original circuit breaker. 

• Inadequate formulation of requirements to avoid or prevent such contributory hazards. 

• Inadequate validation of the HA and the resulting requirements. 
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“The power of generalizing ideas, of drawing comprehensive conclusions from individual 
observations, is the only acquirement, for an immortal being, that really deserves the name of 
knowledge.” Mary Wollstonecraft (1759–1797), British feminist, A Vindication of the Rights of 
Woman, Chapter 4, 1792. [5] 
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Flood Fire 

Circuit breaker (CB) fault 

CB: inadequate design 

CB: deficient interface specification 

Significant unexpected 
system interactions 

Figure 13: Example from event on June 7, 2011, at Ft Calhoun nuclear power plant (NPP). 

https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML101970547
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https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML113010208
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive
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APPENDIX H: Examples of NPP Modes 

Following are examples of modes of a nuclear power plant (NPP) across its lifecycle to serve as 
reminder that each might present different kinds of hazardous conditions: 

1. Construction 

2. Preoperational 

3. Startup testing 

4. Commissioning 

5. Operational 

6. Testing or maintenance being performed 
6.1. Setpoint adjustment 
6.2. Instrument calibration 
6.3. Change (switching) of calibration parameters (in common position (CP) 2.1.3.2.5 in [1]) 

7. Refueling or open vessel (for maintenance) 
7.1. Refueling or open vessel—all or some fuel inside the core 
7.2. Refueling or open vessel—all fuel outside the core 

8. Decommissioning 

Following are examples of modes of an operational nuclear power plant (NPP) to serve as 
reminder that each might present different kinds of hazardous conditions: 

1. Start-up 

2. On Power 
2.1. Raising power 
2.2. Full allowable power 
2.3. Reducing power 
2.4. Reduced power (including zero power) 

3. Hot Shutdown (reactor subcritical) 
3.1. Hot standby (coolant at normal operating temperature) 
3.2. Hot shutdown (coolant below normal operating temperature) 

4. Cold Shutdown (reactor subcritical and coolant temperature < 93°C) 
4.1. Cold shutdown with closed reactor vessel 
4.2. Mid-loop operation – applies to pressurized-water reactor (PWR) only 

Reference 
[1] Task Force for Safety Critical Software, “Licensing of Safety Critical Software for Nuclear 

Reactors: Common Position of Seven European Nuclear Regulators and Authorised 
Technical Support Organizations,” Revision 2013, available at 
http://www.hse.gov.uk/nuclear/software.pdf. 
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APPENDIX I: Evaluation of Timing Analysis 
Author: Dr. John Stankovic, University of Virginia 

http://www.cs.virginia.edu/people/faculty/stankovic.html 
Integrative editing by Sushil Birla 

This appendix summarizes the state of the art in timing analysis. Timing analysis is used in 
design to evaluate its suitability to support timing and related constraints. Timing is reanalyzed 
to confirm satisfaction of these constraints after implementation using actual execution times 
and delays. 

A design description should include the approach being taken to guarantee timing behavior with 
accompanying timing schedules and resource assignments that logically guarantee timing. An 
evaluator can expect to see different approaches. However, it is very unlikely that there exists 
an exact case study or exact match between the principles described below and the system 
under evaluation. It will be necessary for the evaluator to apply significant knowledge and 
expertise in real-time theory and practice. 

In performing timing analysis, there are (at least) four overarching approaches that could be 
presented by the developer –four are listed below and are elaborated in the subsequent 
sections.  

1. First (Sections I.1 and I.2) is a complete and explicit layout of all tasks on timelines that 
represent a deterministic execution time for everything and in such a manner as to meet all 
timing, ordering, and resource constraints. This would include identifying the processing 
elements (central processing units (CPUs), field-programmable gate arrays (FPGAs), etc.), 
the assignment of tasks to each processing element, and message slots on buses and their 
purpose.  

2. Another proposed approach might be the use of fixed-priority scheduling. This means that 
the operating system on each processing element runs tasks according to fixed priorities as 
assigned by the developers to guarantee timing. This approach should be supported by 
fixed-priority mathematical analysis (Section I.3.1).  

3. Another approach might be to use dynamic priorities and apply their associated analysis 
(Section I.3.2). This approach is less deterministic, but has advantages in many situations 
and can be used as an offline analysis to guarantee timing.  

4. A fourth approach is use of FPGAs (Section I.4). In all the design approaches, realistic 
estimated times should be identified. Accounting for redundancy and fault-tolerance 
techniques in the design must be included.  

I.1 Timing analysis by hand 
The developer, using a manual approach, may present a set of timelines with all tasks assigned 
deterministically. How they created these time lines (possibly by hand) might not be known and 
is generally very complex. For the evaluator, once the deterministic timelines are given, it is 
much simpler to check (one by one) whether the set of assignments and timelines meets all the 
timing, ordering, and resource constraints. This approach is sometimes used for small and 
simple subsystems. It is not recommended for complex designs because any change at all 
results in a complete recreation of the timelines and allocations, which is error-prone and costly. 

http://www.cs.virginia.edu/people/faculty/stankovic.html
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I.2 Timing analysis by a program 
In this approach a developer may create the deterministic timelines and assignments using 
some algorithm or heuristics implemented as a computer program. The evaluator would analyze 
the resulting schedules as in Section I.1. This approach is more desirable than in Section I.1, 
because changes can be more easily handled than having to recreate schedules and timelines 
by hand. Cyclic schedulers and time-triggered approaches [1] are examples of this approach. 

I.3 Mathematical analysis of timing 
Many analysis techniques might be applied to the design. Two of the most common are fixed 
and dynamic priorities. These both assume that an underlying operating system (OS) executes 
tasks based on priority. 

I.3.1 Mathematical analysis of timing with fixed priorities 
Rate Monotonic Analysis (RMA) [2] is a set of techniques to assign fixed priorities and perform 
an associated timing guarantee analysis. RMA has been used successfully in some avionics 
systems and in control systems in automobiles. 

RMA focuses on periodic tasks, explained in the next paragraph, but can be extended to 
address both periodic and aperiodic tasks. RMA can incorporate the complexities mentioned in 
Section I.1. As an example, for a large number of periodic tasks, if the sum of the CPU 
utilizations of these tasks is below 69%, it is guaranteed that all deadlines will be met. This is 
true even though there are preemptions. 

A periodic task T of period p means that an instance of that task is activated every time interval 
p. Once a particular instance of the task is activated,  it has its own deadline d. When the 
activated instance's d is p time units from its activation time, then RMA applies. This type of 
real-time task is analyzed using this timing requirement and  is commonly referred to as a 
periodic task with the assumption that deadlines equals periods.  If, for each of the particular 
activations of task T, d is less than p time units from its activation time, then RMA does not 
apply and a new analysis called Deadline Monotonic Analysis (DMA) is required [2]. 

I.3.2 Mathematical analysis of timing with dynamic priorities 
Dynamic priorities normally refer to the OS scheduler, choosing the next task to execute based 
on current task priorities (which can change at runtime). These solutions are usually based on 
the earliest deadline first (EDF) algorithm. However, if all tasks and their requirements are 
known at design and implementation time, EDF and its analysis [3] can be applied offline and 
timing guarantees are possible. In this case, the results are very similar to the fixed-priority 
approach except that the OS is running an EDF scheduler instead of a fixed-priority scheduler. 
An evaluator might also see EDF as a basis for the “timing analysis by a program” approach 
mentioned in Section I.2. 

I.4 FPGAs 
Various functions in the system may be implemented in hardware (today typically through an 
FPGA) [5]. Then execution speed of the function can be greater than on a CPU. Functions 
implemented on an FPGA can be considered tasks in the overall timing analysis and can be 
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considered to be subject to the analysis techniques148 described in this appendix. Of course, 
issues such as input/output (I/O), ordering, synchronization, etc. must all be considered. 

I.5 Practical considerations in applying mathematical analysis 
Basic scheduling theory is often presented with many simplifying assumptions. Fortunately, 
many practical issues can be addressed with extensions to the basic theory for analysis. 

I.5.1 Interrupts 
Sometimes interrupts might be necessary. By careful design it is possible to limit the maximum 
number of interrupts. The time it takes to handle each interrupt can be bounded. Consequently, 
the basic timing analysis can account for the worst-case delays for task executions caused by 
interrupts. See Chapter 5 in [2]. 

I.5.2 Resources 
Tasks often require resources beyond the CPU (e.g., access to a data structure or bus). Tasks 
can contend for these resources. In addition to guaranteeing no deadlock, it is necessary to 
determine the worst-case blocking delay for any exclusively shared resource. In RMA this is 
handled by the priority ceiling version of RMA; see pages 5-47 through 5-60 in [2]. For EDF, see 
Chapter 7 in [3]. 

I.5.3 Ordering 
In many systems, a set of tasks must execute in a fixed order. For example, the sensor must 
first sample, analog-to-digital (AD) conversion must execute, the result must then be sent to a 
processor, a task must execute to process the data, and the processed result must then be 
converted to an actuator control (and possibly also sent to a display). Classical scheduling 
theory has many results for job-shop scheduling in this area. Ordering constraints can also be 
imposed on task sets when using cyclic time-triggered RMA- or EDF-based approaches. See 
pages 3-10 and 3-11 in [2] and Chapter 7 in [3]. 

I.5.4 I/O 
Any inputs for tasks must be ready when an instance of a task is “released” for execution. This 
is normally analyzed as precedence constraints. If the task produces an output, it must be made 
clear when that output happens (e.g., only when execution of the tasks is finished or possibly at 
any point within the execution of the task). Controlling jitter is often necessary for I/O. See 
Chapter 6 in [2]. 

I.5.5 Distributed systems 
Communication between distributed parts of a system introduces delays. Such delays can be 
deterministic if bus slots are defined and allocated. Redundant slots can be allocated for fault 
tolerance. The time-triggered approach is a well-known way to do this [1]. These 
communications delays can also be addressed by RMA (Chapter 6 in [2]). 

                                                 
148 National Instruments is an example of a source of tools currently available for use in common practice 
(for example, the LabView development system together with the Real-Time Module and FPGA module). 
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I.6 Caveats and things to watch out for 
Timing design and analysis is very difficult and fraught with hazards. A slight change in 
assumptions can make a major difference in the accuracy of the analysis. Following are some 
examples of common misunderstandings. 

I.6.1 Task semantics 
Most periodic task analysis assumes that the semantics of a task period means that a task 
executes once per period. This does not guarantee a minimum or a fixed time between two 
instances of a periodic task. For example, with this semantics, two executions of a task could 
run back-to-back without any time interval between them. 

I.6.2 Non-determinism introduced by hardware 
Worst-case execution times must be determined for tasks. This is difficult to determine and is 
often just measured, which is not recommended. Measurements can be way off if 
non-deterministic features on hardware, such as caching, branch prediction, virtual memory, or 
multi-core contention, are involved. 

I.6.3 The overhead of the OS 
Logical analysis might not account for the time it takes to select and switch between tasks. This 
would be incorrect. See pages 392 through 395 in [4]. 

I.6.4 Richard’s Anomalies 
Scheduling can lead to hazardous conditions subtly. For example, if a set of timelines is 
analyzed as correct and then the developer decides to use faster processors (maybe with idea 
to give more slack time, thereby increasing a safety margin), the previous schedules which 
worked (i.e., with all deadlines met) might now miss deadlines even though individual tasks are 
executing more quickly. There are four variations of these anomalies (see pages 42 through 51 
in [4]). 

I.6.5 Overloads 
Many hard real-time systems assume that all timing is guaranteed so there is no such thing as 
an overload. Safety margins can be built into task-execution times and resource requirements to 
make overload even less likely. However, understanding the consequences of an overload, 
even if one is not expected, is important. Will the system fail safely (that is, be fail safe)? Could 
a catastrophic cascade of deadline misses be caused by the overload? See Chapter 9 in [4]. 

I.7 Integrating timing analysis in engineering 
See [6] for an approach to integrate timing analysis in model-based engineering. 

I.8 References for Appendix I 
[1] Kopetz, H., Real-Time Systems: Design Principles for Distributed Embedded Applications, 

Second Edition, Berlin: Springer, April 2011. 

[2] Klein, M., et al., A Practitioner’s Handbook for Real-Time Analysis, 1994 edition, 
Dordrecht, The Netherlands: Kluwer Academic Publishers. 
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[3] Stankovic, J., et al., Deadline Scheduling for Real-Time Systems: EDF and Related 
Algorithms, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998. 

[4] Buttazzo, G., Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and 
Applications, Third Edition, Berlin: Springer, September 2011. 

[5] National Instruments, “NI LabVIEW FPGA Module,” available at 
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834. 

[6] Feiler, P.H., and D.P. Gluch, Model-Based Engineering with AADL: An Introduction to the 
SAE Architecture Analysis & Design Language, Boston: Addison-Wesley, 
September 2012. 

  

http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
http://www.awprofessional.com/
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APPENDIX J: Assumptions 
Author: Dr. John Stankovic, University of Virginia 

http://www.cs.virginia.edu/people/faculty/stankovic.html 
Integrative editing by Sushil Birla 

In reasoning that is part of safety analysis, an assumption is a premise that is not yet validated. 
Explicit assumptions are documented. Implicit assumptions are not documented, because they 
are not known or understood or were lost over time. Assumptions, especially implicit 
assumptions, that turn out to be invalid (not true) are the root cause of many system failures and 
a contributor to hazards in many other cases. An initially valid assumption might become invalid 
over time. It is also common that combinations of assumptions might cause failure or contribute 
to hazards. For example, a component (hardware or software) might be reused without full 
awareness and consideration of assumptions that invalidate its fitness for reuse in a different 
context. Assumptions occur in every phase of the system-development lifecycle (e.g., in 
requirements, design and analysis, implementation, and testing). Overall, it is necessary to 
document, manage, and assess the impact of assumptions throughout the life cycle, particularly 
if some critical property of the system, such as SAFETY, has to be assured. 

Assumptions often affect timing analysis (see Appendix I) and also affect dependencies (see 
Appendix K). 

J.1 Systematized consideration of assumptions—state of the art 
There is a lack of accepted approaches towards systematic assumption declaration, 
management, and assessment. Statements of assumptions may be classified in any of three 
ways: 

1. Formal-like languages: For example, in AADL [1] an assumption can be stated with an 
assumes keyword and some condition written in predicate or temporal logic. Then 
automatic assumption-matching checks can be run. 

2. Semi-Formal: For example, in XML, an assumption may be categorized by type (e.g., see 
Table 27) and incorporated in an assumption-management system [2], as shown in 
Figure 14. 

3. Informal: Used mostly in current practice, an assumption is stated in a natural language 
such as English. Because such a statement is subject to misinterpretation, which can 
contribute to hazards, it is not adequate and not recommended for use in engineering a very 
critical system. 

Assumptions can also be categorized as static and dynamic assumptions and indicate a level of 
criticality. These notions should be part of the assumption descriptions. 

 

<assumption> 
 <type> 

       Control 
</type> 
 <description> 

Statement of control assumption in a previously declared language. 
 </description> 

   </assumption>  
 

Figure 14: Example of semi-formal statement of an assumption. 

http://www.cs.virginia.edu/people/faculty/stankovic.html
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Table 27 includes the different types of assumptions which could be stated in XML, with brief 
associated examples. 

Table 27: Different types of assumptions which could be stated in XML 

Type of Assumption Example of an informal statement of an assumption 
Management Person X is responsible for a particular task. 
Environment (of 
System) 

Backup power is available 24 x 7. 

Software Component 
Design (Decisions) 

Minimum amount of data required for a component to make a decision is <…>. 

System Software Background processing runs at infrequently scheduled times. 
Hardware Caches are not to be used. 
Timing Some declared minimum time must elapse between two consecutive 

executions of a task. 
Control Only one module must control a particular actuator. 
Data Data set X must be replicated at physically distinct memories. 
Semantics of 
Application 

Property X exists for a given component when executed, e.g., the accuracy of 
a signal-processing module when assessing a critical condition of the plant. 

Faults A particular fault will not occur more than x times in interval y. 
Security Communication X is encrypted. 

When an assumption is stated in this form, a management system can analyze it for potential 
problems (e.g., contributory hazards) and updates can occur over time. For example, the 
analysis might find that across the entire set of assumptions there are two or more assumptions 
that cannot simultaneously be true. It is also possible to match assumptions among composed 
components. Some software development kits, such as Eclipse [3], integrate environment, 
assumptions, architecture, and source code in the same tool. 

A complex system may entail an enormous number of assumptions of all types (Table 27) and 
for various purposes (Table 28). 
Table 28: Examples of assumptions for different purposes 
Context of Assumption Example of assumption 
Timing All worst-case execution times are known. 
Timing All tasks always meet their deadlines. 

(What is the impact of a task missing its deadline?) 
Timing There is enough memory assigned to each task. 
Timing No hardware will be changed, etc. 
Fault tolerance On power failure, a battery backup is available and it is functional 
Fault tolerance More than “n” simultaneous failures do not occur. 
Security A particular module will not be attacked. 
Security An encryption key won’t be compromised. 
Control Only one module controls a particular actuator. 
Control Data sent to the control algorithm is correct and in time. 

J.2 Monitoring an assumption at run time 
Because underlying assumptions have been the cause of many failures and can contribute to 
hazards, assumption-aware work products of engineering are valuable (indeed, necessary) in 
complex critical systems (e.g., for which the SAFETY property has to be assured). If an 
assumption can change over time, runtime monitoring for such change may be considered. 
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Does the presented design have an assumption that can change over time? If so, does the 
design include runtime monitoring of the change in the assumption? 

J.3 Statement of assumptions within code 
Sometimes, assumptions are also written into source code (with a keyword such as assumes), 
so that source code can be scanned by programs to collect and analyze all the assumptions. 
This technique often deteriorates over time as code is updated and assumptions are not. 

J.4 Statement of assumptions within models 
Assumptions can also be added to graphic representations of work products, using tools based 
on languages such as SysML [4]. This tends to be imprecise and difficult to maintain. Academic 
tools such as Ptolemy have some support for specifying assumptions [5]. 

J.5 References for Appendix J 
[1] Feiler, P.H., D.P. Cluch, and J.J. Hudak, “The Architecture Analysis &Design Language 

(AADL): An Introduction,” Technical Note CMU/SEI-2006-TN-011, Software Engineering 
Institute, Pittsburgh, PA, February 2006, available at 
http://www.sei.cmu.edu/reports/06tn011.pdf. 

[2] Lewis, G.A., T. Mahatham, and L. Wrage, “Assumptions Management in Software 
Development,” Technical Note CMU/SEI-2004-TN-021, Software Engineering Institute, 
Pittsburgh, PA, August 2004, available at http://www.sei.cmu.edu/reports/04tn021.pdf. 

[3] The Eclipse Foundation, “Eclipse - The Eclipse Foundation open source community 
website,” available at http://www.eclipse.org/home/index.php. 

[4] SysML.org, “SysML.org: SysML Open Source Specification Project,” available at 
http://www.sysml.org/. 

[5] University of California–Berkeley, “Ptolemy Project Home Page,” available at 
http://ptolemy.eecs.berkeley.edu/. 
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APPENDIX K: Dependency 
Authors: 

Dr. John Stankovic, University of Virginia http://www.cs.virginia.edu/people/faculty/stankovic.html 

Dr. Manfred Broy, Technische Universität München http://www4.in.tum.de/~broy/ 

Prof. John McDermid, University of York http://www-users.cs.york.ac.uk/~jam/ 

Integrative editing by Sushil Birla 

K.1 Purpose and scope 
This appendix explains the term, dependency, as it is used in RIL-1101. 

In software it is often noted that if module A uses module B, then module A depends on 
module B. However, dependencies are much more complicated than a simple uses relation. 
This appendix provides a comprehensive understanding of these complications. 

A dependency between two or more system elements may exist or occur through their structure, 
their behaviors, or their values in the form of some cause-and-effect relationship. 

A number of dependencies exist within developed systems and between their elements and 
their constituents, as well as in their descriptions as included in their work products [1]. 

K.2 Safety significance of dependency 
A safety system in a nuclear power plant (NPP) is an independent layer of defense. An 
independent layer of defense protects against the unknowns and uncertainties in the other 
layers of defense. An obscure dependency can undermine the intended defense strategy. 

Dependencies on common sources of defects or deficiencies can render homogeneous 
redundancy ineffective, because the same defect can repeat in each redundant element; for 
example: 

• Defect or deficiency149 in a requirement. 
• Defect or deficiency in the implementation of the application software. 
• Defect or deficiency in the implementation or configuration of the system software. 

Dependencies can propagate the effect of a deficiency to independent and functionally different 
units; consider the following cases: 

• Dependency on common internal information; for example: 
o Year 2000 “bug.” 
o Count of cycles since the last reset. 

• Dependency on conditions external to the units; for example: 
o Usage of resources that depend on process transients. 

Item 3 in Section 2.4.2 of RIL-1101 refers to the concern of compromise of redundancy through 
a dependency. 
The effect of these dependencies should be analyzed to prove that the safety function is not 
degraded. 

                                                 
149 Issue: If requirements are deficient, the terms “failure” and “defect” are not applicable; the 
common-cause failure (CCF) notion, applied to a specified system, does not serve well; and failure 
analysis and defect analysis do not serve as adequate hazard analysis. 

http://www.cs.virginia.edu/people/faculty/stankovic.html
http://www4.in.tum.de/~broy/
http://www-users.cs.york.ac.uk/~jam/
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K.3 Types of dependency 
Any factor on which an identified hazard depends (or by which it is influenced) is a contributory 
hazard. A contributor may influence a hazard in many ways (paths or channels or couplings);150 
for example: 

1. Function. 
2. Control flow. 
3. Data or Information. 
4. Sharing of resources. 
5. Constraint on resources; for example: Explicit preference order. 
6. Conflicting goals or losses of concern. 
7. States or conditions in the environment. 

7.1. Controlled processes. 
7.2. Supporting physical processes. 

8. Fault. 
9. Constraints. 
10. Assumptions. 
11. Concept. 
12. Some unintended, unrecognized form of coupling. 

K.4 Examples of dependencies 
Dependencies exist within and across hardware and software components and also result from 
interaction with the physical world. To organize the ideas of dependencies, we first list and give 
a few examples of those dependencies that arise from the hardware and from the physical 
world. 

1. Sensors: Software signal-processing and decisionmaking algorithms depend on the 
properties of sensors such as range, accuracy, repeatability, sensitivity, resolution, 
overshoot, drift, and power, as well as the numbers and placement (location) of the sensors. 

2. Actuators: The power needed to run the actuator and the accuracy of applying command 
signal influence the output. 

3. Central processing units (CPUs) and memories: Speed of the CPU, implementation 
features such as caches and branch prediction, size of memory, type and location of 
memories on buses, and power requirements influence the output. 

4. Field-programmable gate arrays (FPGAs): Speed, power, timing, and availability of inputs 
influence the output. 

5. Buses: Communication between distributed devices and software depends on the bus 
speed and access protocols; it might also depend on a hierarchy of buses. 

6. I/O devices: Speeds, power, locations, and read and write techniques influence their 
outputs. 

7. Physical properties: Sizes of sensors, actuators, and computing devices; I/O 
interconnection types; temperatures produced by devices; reliability of devices; fault models; 

                                                 
150 In addition to the factors directly in the causal paths, hazards can also be contributed from side effects 
such as interferences across activities and resources. 
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and the question of whether the system will degrade over time without renewal or 
maintenance (a form of entropy) influence the consistency of the system output. 

8. Time: Guaranteeing deadlines depends on the time requirements of real-world phenomena, 
the speed of hardware, the software processing required, and scheduling algorithms; delays 
can accumulate. 

9. Location: Placement of sensors, actuators, and displays influence the system output. 

10. Environment: External conditions such as earthquakes, hurricanes, power outages, 
humidity, and fire influence the system output. 

11. Control: The accuracy of models under which control algorithms were created and the 
availability or maximum delay of inputs to controller influence the output. 

12. Chain of events: A particular series of events influences the system output. 

13. Humans: Reaction time, awareness, and expertise influence their output. 

Examples of dependencies that arise primarily in software include the following: 

1. Numbers and types of parameters: This is straightforward to check and often given in 
Interface Definition Languages (IDLs). 

2. Uses relationship: A call graph (usually automatically generated) can identify simple 
relationships between and among uses. 

3. Runtime environment: The operating system (OS), its version, and particular settings 
(configurations) and algorithms being used constitute the runtime environment. It is 
necessary to ensure that unexpected modules are not being run, e.g., modules for system 
monitoring or periodic cleanup which are accounted for.  

4. Resources: Amount of CPU time, memory, and bus bandwidth. 

5. Name: Components are assumed to be named consistently. 

6. Data: Location, synchronization, availability, and redundancy. 

7. Ordering: Some sets of components must run in a strict or partial order. 

8. Race conditions: If some condition causes uncertainty in the time of completion of some 
functions or the time of arrival of some data and thus the order of these occurrences,  it is 
called a race condition. If the order of occurrence can affect the value of the system output it 
could be a hazard – sometimes known as a race hazard. 

The following examples demonstrate how tight specifications, assumptions, and constraints 
interrelate logically and might lead to implicit dependencies that can be discovered by analysis 
of explicitly documented dependencies. 

K.4.1 Example of a data dependency 
For instance, two state attributes, A and B, for data values in a system are in a dependency if, 
given the value of A, the value of B is affected by the value of A (e.g., fixed to a specific value or 
bounded within a specific range). 

K.4.2 Example of a timing dependency 
Other examples are timings of events or causal dependencies between events such as shown 
in the following simple example: 

• Event A: “Temperature of water gets too high while valve is closed”; 
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• Event B: “Valve opens”; 

• Dependency in the system: “Whenever Event A happens, then event B happens within 
x milliseconds.” 

K.4.3 Example of a dependency on a hardware function 
A function or information in software can depend on a function implemented in hardware. 
An example would be: 

 “Sensor 1 data available” depends_on “Power supply X failure” 

 “Sensor 2 data available” depends_on “Power supply X failure” 

which indicates a common-cause failure. Such a dependency is different from direct 
dependency. 

A common-cause dependency between events A and B, denoted as  common_cause A, B 
has the following meaning: 
if there is an event C for which the conditions 

 A depends_on C 
and 

 B depends_on C 

hold. 

K.4.4 Example of a resource dependency 
These different types of dependencies may interact. For instance, a resource dependency might 
cause a functional dependency. Two functions, A and B, that are intended to be independent 
but use the same resources can unintentionally become dependent. If function A might 
compromise the shared resource in a certain situation in such a way that function B is no longer 
available, and vice versa. this is a bidirectional dependency between A and B. Then, the hazard 
analysis (HA) of the system should include the analysis of this dependency.  

K.4.5 Dependency through assumptions and constraints 
Constraints on interactions can cause dependencies. 

• Properties of the environment might actually be assumptions (example: “The water 
temperature cannot change by more than 10 degrees within 10 milliseconds”). 

• Properties of system elements might interact with such assumptions (example: “Whenever 
the temperature changes by more than 1 degree, the sensor issues a signal”). 

• In this way, dependencies are created by constraints on the interactions (example: “There 
is a delay of at least 1 millisecond between two signals issued by the temperature 
sensor”). 

Assumptions are often not given to the developer as part of the specification and are not direct 
relationships between components of the system. Note that the overall system depends on 
assumptions being valid, so there are dependencies related to assumptions - see Appendix J. 

K.4.6 Example of logical dependency between logical entities 
Let us consider examples of system properties expressed by logical entities: 
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(P1) “The temperature changes within 1 millisecond by less than 1 degree.” 

(P2) “The temperature sensor updates the variable that stores the measured temperature 
every 10 milliseconds.” 

(P3) “The variable that stores the measured temperature holds a value that deviates at most 
by 10 degrees from the actual temperature.” 

These logical entities may be contained in different work products or in one work product at 
different positions. 

(P3) expresses a system dependency. 

(P3) is a logical consequence of (P1) and (P2). This is an example of a dependency between 
logical entities. 

If the property “The water is too hot” is a hazard (or a contributing hazard) and if its mitigation 
depends on the preciseness of the stored measured temperature, the dependency “(P3) is a 
logical consequence of (P1) and (P2)” is of relevance for the hazard analysis. If (P1) or (P2) are 
changed, the conclusion of the hazard analysis might no longer be valid. 

Specific logical dependencies may relate logical entities formulated at different levels of 
abstraction. Assume that a sensor sends an alarm signal S1 if the water temperature gets too 
hot. If this is the case, the dependency between event “signal S1 sent” and the event “water 
temperature too hot” is only understandable by the additional information “signal S1 indicates 
water too hot”. This way we get a relationship between the technical information “signal S1 sent” 
and the domain-specific event “water temperature too hot”. 

For dependencies between system properties, the dependency model basically represents 
logical dependencies between logical statements (in terms of logical entities) using the 
mathematical relation, “logical implication.” Given a number of logical propositions, their 
implication relationships can be combined applying deduction rules. This related set is a 
subnetwork of the complete network of logical dependencies in the system. This subnetwork 
can lead to proof trees (see [1]). 

K.5 Dependencies can network 
For a system of the kind in RIL-1101’s focus, dependencies are not simple chains or trees, but a 
network (also known as directed graph or digraph [2]); for example: 

• The same factor might recur in many places in the network (i.e., common causes might 
exist). 

• There are feedback paths; the dependency structure is a directed cyclic graph. It is a 
well-known generic control structure for which well-known analysis techniques exist. It 
can be applied to a safety-related system in its concept phase (Section 2.4) or to its 
element (Sections 2.7 through 2.9). It can also be applied to the technical processes 
(Section 2.3), for developing a safety-related system or its element. It can also be 
applied to the organizational processes (Section 2.2) that influence the development 
processes. 

K.6 Dependencies can propagate through faults 
Many dependencies also exist for faults in systems. Hazard analysis should include the analysis 
of the dependencies across faults to find out whether a fault can propagate and degrade a 
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safety function. This requires a fault-propagation specification and component fault behavior 
specification, an explicit specification of fault types propagated, and an explicit specification of 
system fault states [3]151. 

K.7 Unrecognized dependency 
Missing, wrong, unwanted, or misunderstood dependencies might contribute to a hazard. If A 
can have an unwanted effect on B, then B is in some sense dependent on A. In other words, 
B is not independent of A. Dependence of this type motivated RIL-1101, in which it is 
characterized as “interference.” Furthermore, in such cases (of unwanted interactions), the 
effect on B might not be determinable. For example, consider the effects of resource sharing 
and of a memory leak. 

There are so many sources of unwanted dependencies that it is easy152 to miss one. As soon as 
one is discovered or suspected, it should be documented. Once this is done, known methods 
can be applied to perform the analysis. 

Unrecognized dependencies are defects in hazard analysis and might lead to degradation of a 
safety function. 

For complicated dependencies, many observations are needed to uncover dependency [4]. 

K.8 Expressing dependencies 
System dependencies are general relations between 

• system functions 
• system elements 
• platform (infrastructural) services 
• system events, messages, and signals 
• system data 
• system states 
• system timing 

This documentation can be made very explicit (for example, in proposition P1, “event A leads to 
event B,” and proposition P2, “event B leads to event C”) or it can be implicit in such a way that 
a dependency can be concluded from explicit stated dependencies (for example, from the two 
propositions P1 and P2, we can conclude proposition P3, “event A leads to event C”). If all three 
propositions P1, P2, and P3 are explicitly included in work products in logical entities (say, E1, 
E2, and E3 respectively), we get an instance of dependencies between logical entities of work 
products. The contents of E1 and E2 imply proposition P3 being part of the content of E3. 

The following predicate expresses dependencies in a formalized way for events A and B in a 
system: 
 A depends_on B 

                                                 
151 This reference uses the term “error,” which is mapped into the term “fault” in RIL-1101. 
152 In current practice. 
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This proposition expresses that there is some causal relationship between A and B. Such a 
causal relationship can have many different aspects and implications: 

• A cannot happen before B has happened; as an example, consider a system which is 
supposed to raise an alarm (event A) as soon as the pressure in a tank gets too high 
and in which a sensor measures the pressure and sends the values to the alarm 
manager (event B). 

• A is guaranteed to happen if B has happened; as an example, consider a system which 
is supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high 
and in which a sensor measures the pressure and sends the values to the alarm 
manager (event B); an instance of “incorrect ‘pressure too high’ data measured at 
sensor” (event B) leads to an incorrect alarm (event A). 

• A cannot happen if B has happened; as an example, consider a system which is 
supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high 
and in which a sensor that measures the pressure and sends the values to the alarm 
manager over a communication line, but assume that the energy supply for the 
communication line can be interrupted (event B). 

Note that the proposition 
 A depends_on B 

does not require that, as a result of every behavior, event A may interfere with B; it means that 
in some instance of behavior, A does interfere with B. 

Note furthermore that the relationship 
 A depends_on B 

Is not symmetric, in general, and is not even transitive. The same holds for its negation 
 A is_independent_of B 

The missing transitivity of the independence relation makes it very difficult to reason about 
independence and freedom from interference. 

The examples show that dependencies between system constituents lead to dependencies 
between logical entities of work products. Because the content of logical entities of work 
products can be understood as logical propositions and predicates, these dependencies can be 
treated as logical relations between propositions or predicates. 

Similar to the formulation of a formal predicate characterizing dependencies between events, 
discussed above, relationships can be characterized between data attributes in states and, 
more generally, one can formulate rules for dependencies in data and control flow and the 
propagation of their effects. 

System dependencies can be reflected in system models. The models should contain enough 
information to understand dependencies and propagation paths for contributory hazards (see 
the suggestion in Note 1 to Table 22 in Appendix C.5 for how a dependency model can help 
HA). 

A model captures and describes certain classes of dependencies (such as process 
dependencies), including rules to derive dependencies and to analyze their effects. This does 
not imply that a separate model is needed exclusively for this purpose. A separate model could 
lead to inconsistencies with the primary engineering model. For dealing with dependencies 
within the work product, the primary engineering model of the (work) product should suffice. For 
example, the work product might be a model of requirements, model of architecture, or model of 
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detailed design. Source code could also serve as a “model” of the executable. These models 
should be expressive enough to capture all kinds of dependencies. 

For dependencies within the development process, the primary engineering model of the 
process should suffice. In other words, all factors affecting the product (of the process) should 
be identified in the process model. 

Semantics of the relationships should be explicit. 

K.9 Deriving dependencies 
Note the difference between an implicit dependency (which is not documented explicitly, but can 
be deduced by combination from explicitly documented dependencies) and a dependency that 
is not identified at all (which is, therefore, not discoverable through analysis). 

The system’s behavior can be deduced from the architecture and the specification of the 
interface behavior of its elements when rules of composition and refinement are followed (see 
Appendix D). Similarly, system behavior can also be deduced from some fault condition in an 
element of the system if the architecture includes the relationships that affect fault 
propagation [5]. HA should utilize this information including rules to deduce further 
dependencies from explicitly documented ones. 

Thus, a well-specified architecture is essential for dependency analysis (see [3] and [5]). 

K.10 Avoiding unwanted dependency 
Careful explicit specification of constraints and system properties and subsequent analysis 
make hidden dependencies explicit and help to avoid unwanted dependencies and to reason 
about dependencies in hazard analysis. 

K.11 Languages available for modeling dependencies 
Examples of means that have been used to model153 dependencies include the following: Call 
graphs, IDLs [6], data flow diagrams, and design languages (graphical or not) such as AADL [7] 
and SysML [8]. AADL, with extensions and supporting tools, is in use as a research platform in 
many countries, with ongoing extension activities to support safety evaluation [3]. 

 

For Want of a Nail 
For want of a nail the shoe was lost. 

For want of a shoe the horse was lost. 
For want of a horse the rider was lost. 

For want of a rider the message was lost. 
For want of a message the battle was lost. 
For want of a battle the kingdom was lost. 
And all for the want of a horseshoe nail. 

-Traditional 

                                                 
153 These are not necessarily complete and are only as good as the information recorded in them. 
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